(34.204.201.220) 您好!臺灣時間:2021/04/20 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李俊興
研究生(外文):Lee Jun-Hsing
論文名稱:光滑及粗糙直線渠道二次流流場水力特性之試驗研究
論文名稱(外文):Flow Characteristics of Secondary Currents in a Straight Open-channel with Smooth and Rough Beds
指導教授:盧昭堯盧昭堯引用關係
指導教授(外文):Lu Jau-Yau
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:96
中文關鍵詞:二次流
外文關鍵詞:Secondary currents
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
縱向二次流之流動機制,不只具有傳輸作用,其下降流掏刷底床形成砂谷( trough ),而被刷起之細粒料物質,藉由上昇流之撥掃帶動,形成砂脊( ridge ),此三維結構物稱為砂帶( sand stripe )。吾人依據此一天然現象,在實驗室明渠水槽中,於玻璃底床黏貼3×3平方釐米之正方形結構物,以三維光纖雷射杜卜勒流速儀( 3-D FLDV )觀察加糙物對橫向流場所造成之影響,及其水力特性。
實驗條件同為粗糙底床與0.1%渠坡,寬深比分為2與4;福祿數分別為0.73及0.78;流場雷諾數則為50800與38375。量測之項目涵蓋底床剪應力、渦度、紊流強度及雷諾應力等物理性質,並與洪(2003)之光滑底床實驗結果進行比較。
粗糙底床流場中之二次流之各項物理性質與光滑流場有所不同,在凸起物( ridge )附近尤為明顯,底床加糙對橫向流場之作用呈現窄而深之影響。加糙物相對於水深之比例,為影響底床剪應力分佈重要因素之一,而欲觀察底床剪應力分佈型態,可藉由分析雷諾剪應力等值圖而得。
直線渠道之二次流通常受紊流非等向性影響,生成於角隅區或近邊界區。二次流所具傳輸之功能,會運移物質、動量及熱能,在流場中建構出速度、溫度以及物質濃度之三維結構性。二次流之流速,相對於主流向最大流速而言,其比例甚小(約5%),卻能深深地影響這些物理現象。

Secondary currents not only transport heat, energy, mass, and pollution, but also cause the structures of downstream river by interaction with river bed. Sand stripe, which includes trough and ridge, is a 3-D complex structure that may exist in a river. A trough is formed by the downward flow of the secondary current, and the ridge is caused by the upward flow.
In this study, experimental investigations are performed in a straight open channel with rough bed (two rough stripes) and fully developed turbulent flow to increase our understanding of the flow structures. The channel width and slope are 25 cm and 0.1%, respectively, and the aspect ratios are 2 and 4. The results are compared with Hong’s (2003) smooth bed experiments.
In contrast to the smooth bed experiments, the major difference occurs around the ridge. The bulge structures have significant effect on the transverse flow. The relative roughness (roughness height over flow depth) influences the transverse distribution of the boundary shear stress, which can be observed by analyzing the plot of iso-Reynolds’ stress curves.
Secondary currents in a straight open channel are induced by the isotropic property of turbulent flow, and frequently occur near the corners or channel boundaries. Although the velocity of the secondary currents is usually very small (less than about 5%) as compared to the maximum velocity in the longitudinal direction, it has significant effect on the 3-D structures of the velocity, temperature and concentration of material in the flow.

中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1-1.前言 1
1-2.研究目的 2
1-3.內文組織 2
第二章?文獻回顧 3
2-1二次流 3
2-1.1簡介 3
2-1.2二次流討論 7
2-2邊界剪應力 11
2-2.1邊界剪應力之量測 11
2-2.2邊界剪應力分佈 12
2-2.3 壁定理 14
2-3紊流強度 18
2-4雷諾剪應力 20
第三章 三維實驗設備與量測 23
3-1實驗設備 23
3-1.1循環水槽 23
3-1.2三維FLDV系統 27
3-2 實驗設計及佈置 30
3-3 正式實驗 43
第四章 三維量測結果與分析 46
4-1平均速度 47
4-2 二次流 53
4-3 底床剪應力 57
4-4.紊流特性探討 60
4-4-1渦度 60
4-4-2紊流強度 64
4-4-3紊流非等向性 69
4-4-4雷諾剪應力 71
4-5渦度方程式之分析 75
第五章 結論與建議 84
5-1結論 84
5-2建議 89
參考文獻 90
附錄 93

1. 錢寧、萬兆惠(1981),“泥沙運動力學”,科學出版社。
2. 胡春宏、惠遇甲(1995),“明渠挾沙水流運動的力學和統計規 律”,科學出版社
3. 洪健豪(2003),“光滑明渠紊流流場水力特性之研究”, 中興大學土木工程研究所博士論文。
4. Brundrett, E. and Baines, W. D. (1964), “The production and diffusion of vorticity in duct flow,” J. Fluid Mech., Vol. 19. Part. 3.
5. Ghosh, S. N. and Roy, N. (1970), “Boundary shear distribution in open channel flow,” J. Hydr. Div., ASCE, 96(4): 967-994.
6. Imamoto, H., Ishigaki, T., and Shiono, K., (1993), “Secondary flow in a straight open channel,” Proc. 25th IAHR Congr., Vol. 1, 73-80.
7. Karcz, I., (1966), “Harrow marks, current-aligned sedimentary structures,” J. Geo., Vol. 75.
8. Knight, D. W. (1981), “Boundary shear in smooth and rough channels.” J. Hydr. Div., ASCE, 107(4): 839-851.
9. Knight, D. W., Demetriou, J. D. and Hamed, M. E. (1984), “Boundary shear in smooth rectangular channels,” J. Hydr. Engrg. , ASCE, 110:405-422.
10. McLelland, S. J., Ashworth, P. J., Best, J. L., and Livesey, J. R. (1995), “Turbulence and secondary flow over sediment stripes in weakly bimodal material”
11. Nezu, I. (1977), “Turbulent structure in open channel flows.” Ph. D. Thesis presented to Kyoto University, Kyoto, Japan.
12. Nezu, I. and Nakagawa, H. (1984), “Cellular secondary currents in straight conduit,” J. Hydr. Engrg., ASCE, 110: 173-193.
13. Nezu, I. and Rodi, W. (1985), “Experimental study on secondary currents in open channel flow,” Proc. of 21st IAHR Congress, Melbourne, 2:115-119.
14. Nezu, I., and Rodi, W. (1986), “Open-channel flow measurements with a laser Doppler anemometer,” J. Hydr. Engrg. , ASCE, 112(5): 335-355.
15. Nezu, I., Nakagawa H., and Kawashima, N., (1988), “Cellular secondary currents and sand ribbons in fluvial channel flows,” 6th Congress Asian and Pacific Regional Division International for Hydraulic Research, Kyoto, Japan 20-22, July.
16. Nezu, I. and Nakagawa, H., (1993), “Turbulence in open-channel flows,” A. A. Balkema Publishers.
17. Nezu, I., Tominaga, A. and Nakagawa, H., (1993), “Fileld measurements of secondary currents in straight rivers,” J. Hydr. Engrg. , ASCE, Vol. 119, No.5 : 598-614.
18. Nezu, I., Onitsuka, K. and Naot, D., (2000), “3-Dimensional measurement of open-channel flows by using two-sets of laser Doppler anemometers,” J. Hydro. and Hydr. Engrg. Vol.18, No.2 November, 55-62.
19. Nikuradse, J. (1930), “Turbulence stromung in nichtkreisformigen rohren.” Ing. -Arch. 1: 306-332.
20. Ohmoto, T. and Hayashi, S., (2003), “Study on generation mechanism of seondary currents in open-channel flow by direction numerical simulation,” J. Hydroscience and Hydraulic Engrg.( In japan ) Vol.21 May, 11-21.
21. Pao, H. F. (1967), “Fluid dynamics.” Charles E. Merrill Books, Inc. Columbus, Ohio.
22. Prandtl, L. (1925), “Űber die ausgebildete turbulenz.” ZAMM, 5:136.
23. Sarma, K. V. N., Lakshminaraynan, P., and Rao, N. S. L. (1983), “Velocity distribution in smooth rectangular open channels,” J. Hydr. Engrg., ASCE, 109(2):270-289.
24. Smith, C.R., and Schwartz, S.P, (1983), “Observation of streamwise roation in the near-wall region of a turbulent boundary layer,” Phys. Fluids, 26, No.3, pp.641-652.
25. Tominaga, A., Nezu, I., Ezaki, K., and Nakagawa, H. (1989), “Three-dimentional turbulent structure in straight open-channel flows,” J. Hydr. Res. 27:149-173.
26. Tominaga, A., and Nezu, I., (1991), “Turbulence structure of share flow with spainwise roughness heterogeneity,” Envi. Hydr. Lee & Cheung (eds), Balkema Rotterdam
27. Tominaga, A., and Nezu, I., (1992), “Velocity profiles in steep open-channel flows,” J. Hydr. Engrg., ASCE, Vol. 118, No. 1.
28. Tominaga, A., and Nezu, I., (1993), “Turbulence control of channel flow by forced secondary currents over Longitudinal Ridge,” Ninth Symposium on “Turbulence Share Flows” Kyoto, Japan, August 16-18.
29. Webel, G. and Schatzmann, M. (1984), “Transverse mixing in open channel flow,” J. Hydr. Engrg., ASCE, 110(4): 423-435.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔