(100.26.179.251) 您好!臺灣時間:2021/04/15 15:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高衛聖
研究生(外文):Wei-Sheng Kao
論文名稱:利用普魯士藍修飾電極探討三價砷在土壤中的吸附與脫附
論文名稱(外文):Study of Adsorption and Desorption of Arsenic(III) in Soils with Prussian Blue Modified Electrode
指導教授:陳鴻基陳鴻基引用關係李國欽李國欽引用關係
指導教授(外文):Horng-Ji ChenGwo-Chen Li
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:121
中文關鍵詞:三價砷普魯士藍伏安法流動注入分析土壤吸脫附
外文關鍵詞:ArsenicArsenitePrussian BlueVoltammetryFIAsoiladsorption/desorption
相關次數:
  • 被引用被引用:3
  • 點閱點閱:210
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
台灣西南沿海是烏腳病的流行區,該地區土壤中砷含量有偏高的情形,砷含量過高會經由各種途徑對人體造成毒性與傷害,因此環境中砷的偵測至為重要。探討與瞭解普魯士藍修飾電極在三價砷偵測上的機制,可作為日後土壤中砷物種偵測上的理論基礎。此外,由於現今有機農法的盛行,農地中常施用大量有機堆肥做為土壤養份的來源,因此試驗中針對三種不同土類土壤(大里系、秀水系及吳厝系)經堆肥處理後對三價砷吸附與脫附情形做進一步的探討。經X-射線繞射儀與傅立葉轉換紅外線吸收光譜儀試驗結果證實三價砷在普魯士藍上的專一性吸附機制,且利用普魯士藍修飾網版印刷碳電極可成功偵測土壤中的三價砷,以電流計法偵測不同濃度三價砷時其標準定量曲線有一良好的線性關係 (R2 = 0.996) ,且樣品的偵測結果與感應耦合電漿放射光譜儀的測值十分吻合(R2 = 0.976),進一步搭配流動注入系統的偵測方式,可大大提高分析效率,降低偵測極限,應用於土壤中三價砷的研究可得到更好的結果。由土壤三價砷的吸附試驗中發現堆肥處理會增加秀水與后里土壤對三價砷的吸附,且其中以秀水土壤增加情形較為明顯,此與有機質含量的增加有關。對興大土壤而言,堆肥處理後對三價砷的吸附行為較為特別,在低濃度時吸附量會降低,而高濃度時吸附量卻又增加,其受土壤中膨脹性黏土礦物與有機質鍵結所形成的複合物影響較大,複合物會大大影響三價砷的吸附。三種土壤不論有無施用堆肥,在脫附百分率的大小順上依序為興大>秀水>后里,其中秀水土壤雖在施用堆肥後吸附力大小明顯增加,但脫附百分率下降情形卻較不明顯,顯示脫附行為受到土壤黏土礦物成分所影響。利用電化學分析技術進行土壤中三價砷的吸附與脫附試驗結果,得知此技術不僅可達到快速、簡便、準確且經濟的目的外,進一步更提高了污染現址土壤研究的可行性,開拓土壤化學研究的新視野。
There are higher arsenic content in blackfoot disease endemic village soils of in southwestern coast area in Taiwan. Arsenic will cause toxicity and harm to human body through various pathway, so the determination of arsenic is very important. In this study, we established a basic detective method of arsenic(III) in soils with Prussian blue-modified electrode. Because popularity of organic agriculture at present, we studied adsorption and desorption of arsenic(III) on three different soils (Hsingta, Shiushui and Holi) with blank and compost treatments. The mechanism of specific adsorption of arsenic(III) on Prussian blue was solved by X-ray diffraction and FT-IR spectrometers. The mechanism could be extended to the determination of arsenic(III) with Prussian blue-modified screen-printed carbon electrode that had a good linear calibration curve (R2 = 0.996). Furthermore, the results of determination for different arsenic(III) concentration between electrochemical analysis and inductively coupled plasma emission spectroscopy are also much consistent (R2 = 0.976). The method have high potential and is a new analytical tool for studying arsenic(III) of soils. Sensitivity and detective limits could be improved by coupling with flow injection analysisa, and it had better resolution in determination and researches of arsenic(III) in soils. The results of adorptive experiments showed that soils treated with compost would increase their adsorptive ability of arsenic(III) due to increase organic matter content. However, Hsingta soil became more suprising, adsorptive ability of arsenic(III) decrease in lower concentration range but increase in higer concentration range. We thought the complexation of smectites and organic matter made the major contribution. The order of desorptive proportion were Hsingta > Shiushui > Holi in blank and compost treatments. Shiushui soils was stranger among three soils and its adsorptive ability of arsenic(III) increased apparently after compost treatments, but desorptive proportion didn’t increase. That indicated the desorption process was controlled mainly by the types and contents of clay minerals. In conclusion, the novel method provided not only a fast, convenient, accurate and economic determination for arsenic(III) in soils, but also possessed high potential as a new analytical tool to study arsenic(III) of soils. Finally, we could create a brandnew field of soil chemistry researches.
摘 要 3
Abstract 4
目 錄 6
表 次 8
圖 次 9
第一章 前 言 11
第二章 對三價砷偵測機制之探討 14
一、前人研究 14
二、材料與方法 21
(一)、 砷在普魯士藍上的吸附試驗 21
(二)、 三價砷與普魯士藍鍵結機制之試驗 23
三、結果與討論 24
(一)、 吸附與鍵結機制 24
(二)、 電化學活性與偵測 35
四、結論 49
第三章 不同土壤對三價砷吸附與脫附之研究 50
一、前人研究 50
二、材料與方法 63
(一)、 試驗土壤理化性質分析: 63
(二)、 供試肥料 63
(三)、 試驗土壤粘土礦物成分分析: 64
(四)、 採樣與試驗分析 64
試驗部分 67
(一)、 校正曲線 67
(二)、 吸附試驗 67
(三)、 Freundlich等溫吸附方程式 67
(四)、 脫附試驗 68
(五)、 脫附百分率 68
三、結果與討論 69
四、結論 96
第四章 總結 97
參考文獻 98
附錄 112
(一)、半自動網版印刷機、網版印刷碳電極之製作流程及可攜帶型電化學分析儀 112
(二)、實驗裝置示意圖 114
(三)、電流計法操作流程 115
(四)、流動注入分析系統架構簡圖 116
(五)、市售皂白石粉末之XRD 117
(六)、市售高嶺石粉末之XRD 118
(七)、市售黏土礦物之吸附試驗流程 119
(八)、市售兩種黏土礦物對三價砷之吸附曲線及Freundlish模擬方程式參數 120
(九)、三種土類土壤調查報告書與國際分類系統 121
何杏。2001。利用普魯士藍煤渣修飾電極偵測鉈與銨離子之研究。國立中興大學化學研究所碩士論文。
李俊德。1995。二階萃取前濃縮法配合微分脈衝陽極剝除伏安法測定環境水樣和生物試樣之微量金屬元素。國立清華大學原子科學研究所博士論文。
劉家瑞。2002。汞薄膜網版印刷電極偵測重金屬離子之研究。國立中興大學化學研究所碩士論文。
鍾協訓、曾志明。2000。網版印刷電極在在分析化學上的製作與應用。科儀新知22(3)(119期): 72-82。
黃弘斌。1997。台灣數種農耕土壤之總砷量與固相砷型態及對砷之吸附。國立中興大學土壤環境科學研究所碩士論文。
林浩潭。1999。砷與有機物交互作用之探討。國立中興大學土壤環境科學研究所博士論文。
許昺奇。1991。烏腳病地區和宜蘭地區地下井水及土壤中砷和硒含量與居民死亡率之相關研究。中國醫藥學院環境醫學研究所碩士論文。
陳君哲。1991。四種不同型態砷於土壤中之轉變及移動研究。國立中興大學土壤學研究所碩士論文。
陳佩彥。2003。含鐵混價化合勿在電分析化學之研究與應用。國立中興大學化學研究所博士論文。
Agget, J., and G.A. O’Brien. 1985. Detailed model for mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri, Environ. Sei. Technol., 19:231-237.
Anderson, M.A., J.F. Ferguson, and J. Gavis. 1975. Arsenate adsorption on amorphous aluminum hydroxide. J. Colloid Interface Sci. 54(3): 391-399.
Arnold J.P., and R.M. Johnson. 1969. Polarography of arsenic. Talanta. 16:1191.
Barra, C.M., and M.M. Correia dos Santos. 2001. Speciation of inorganic arsenic in natural waters by square-wave cathodic stripping voltammetry. Electroanalysis. 13(13):1098-1104.
Berry, L.G. 1974. Selected powder diffraction data for minerals. Joint Committee on Powder Diffraction Standards, Swarthmore, Pennsylvania, USA.
Bhumbla, D.K., and R.F. Keefer. 1994. Arsenic mobilization and bioavailability in soils. In “Arsenic in the Environment, Part 1: Cycling and Characterization.”(J.O. Nriagu, ed.), pp. 51-82. Wiley & Sons, New York.
Brannon, J.M., and W.H. Patrick, Jr. 1987. Fixation, transformation ,and mobilization of arsenic in sediments. Envir. Sci. Technol. 21: 450-459.
Brookins D.G. 1988. p.175. Eh-pH diagrams for geochemistry. Springer-Verlag, New York,.
Burguera, M., and J.L. Burguera. 1997. Analytical methodology for speciation of arsenic in environmental and biological samples. Talanta, 44, 1581-1604.
Carpenter, M.K., R.S. Conell, and S.J. Simko. 1990. Electrochemistry and electrochromism of vanadium hexacyanoferrate. Inorg. Chem. 29: 845-850.
Cavicchioli, A., M.A. La-Scalea, and I.G.R.Gutz. 2004. Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: a review. Electroanalysis. 16(9)697-711.
Cheng, C.N., and D.D. Focht. 1979. Production of arsine and methylarsines in soil and in culture. Appl. Environ. Microbiol. 38: 494-498.
Chilvers, D.C., and, P.J. Peterson. 1987. Global cycling of arsenic. In “Lead, Mercury, Cadmium. And Arsenic in the Environment” (T. C. Hutchinson and K. M. Meema, eds.), PP. 279-301. Wiley & sons, New York.
Cornu, S., D. Breeze, A. Saada, and P. Baranger. 2003. The influence of pH, electrolyte type, and surface coating on arsenic(V) Adsorption on to kaolinites. Soil Sci. Soc. Am. J. 67:1127-1132.
Das, D., G. Samanta, B.K. Mandal, T.R. Chowdhury, C.R. Chanda, P.R. Chowdhury, G.K. Basu, and D. Chakraborti. 1996. Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. and Health. 18:5-15.
Dasgupta, P.K. 2002. Editorial. Talanta. 58:1-2.
Davidson, D., and L.A. Welo. 1928. The nature of Prussian Blue. J. Phy. Chem. 32(8)1191-1196.
Davis, P.H., G.R. Dulude, R.M. Griffin, W.R. Matson, and E.W. Zink. 1978. Determination of total arsenic at the nanogram level by high-speed anodic stripping voltammetry. Anal. Chem. 50(1)137-143.
Deuel, L.E., and A.R. Swoboda 1972. Arsenic solubility in a reduced environment. Soil Sci. Am. Proc. 36:276-278.
Dostal, A., G. Kauschka, S.J. Reddy, and F. Scholz. 1996. Lattice contractions and expansions accompanying the electrochemical conversions of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions. J. Electroanal. Chem. 406: 155-163.
Dudas, M.J. 1987. Accumulation of native arsenic in acid sulphate soils in Alberta. Can. J. Soil Sci. 67:317-331.
Dudas, M.J., and S. Pawluk. 1980. Natural abundances and mineralogical partitioning of trace elements in selected Alberta soils. Can. J. Soil Sci. 60:763-771.
Duncan, J.F., and P.W.R. Wrigley. 1963. The electronic structure of the iron atoms in complex iron cyanides. J. Chem. Soc. 1120-1125
Elkhatib, E.A., O.L. Bennett, and R.J. Wright. 1984. Arsenite sorption and desorption in soils. Soil. Sci. Soc. Am. J. 48:1025-1030.
Feeney, R., and S.P. Kounaves. 2000. On-site analysis of arsenic in groundwater using a microfabricated gold ultramicroelectrode array. Anal. Chem. 72(10):2222-2228.
Feraus, I.F. 1955. A note on toxicity in some Queensland soils. Queensland J. Ag. Sci. 12:95-100.
Forsberg, G., J.W. O''Laughlin, R.G. Megargle, and S.R. Koirtyihann. 1975. Determination of arsenic by anodic stripping voltammetry and differential pulse anodic stripping voltammetry. Anal. Chem. 47(9):1586-1592.
Frost, R.R., and R.A. Griffin. 1977. Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Sci. Soc. Am. J. 41:53-57.
García-Jareño, J.J., A. Sanmatías, J. Navarro-Laboulais, and F. Vicente. 1998. The role of potassium and hydrogen ions in Prussian blue ─ Everitt’s salt process. Electrochimica Acta 44: 395-405.
Garcia-Manyes, S., G. Jimenez, A. Padro, R. Rubio, and G. Rauret. 2002. Arsenic speciation in contaminated soils. Talanta. 58:97-109.
Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p. 383-411. In A. Klute. (ed.) Methods of soil analysis. Part I. Physical and mineralogical methods. 2nd ed., Amer. Soc. Agron., Madison.
Goldberg, S.. 1986. Chemical modeling of arsenate adsorption on aluminum and iron oxide minerals. Soil Sci. Soc. Am. J. 50:1154-1157.
Goldberg, S., and R.A. Glaubig. 1988. Anion sorption on a calcareous, montmorillonitic soil arsenic. Soil Sci. Soc. Am. J., 2:1297-1300.
Goldberg, S., and C.T. Johnston. 2001. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid and Interface Sci. 234: 204-216.
Goldberg, S.. 2002. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 66:413-421.
Gupta, S.K., and K.Y. Chen. 1978. Arsenic removal by adsorption. Journal WPCF, pp. 493-506.
Gustafsson, J.P., and N.T. Tin. 1994. Arsenic and selenium in some Vietnamese acid sulfate soils, Sci. Total Environ. 151:153-158.
Hamilton, T.W., and J. Ellis., and T.M. Florence. 1980. Determination of arsenic and antimony in electrolytic copper by anodic stripping voltammetry at a gold film electrode. Anal. Chim. Acta. 119:225-233.
Hermes, M., and F. Scholz. 1997. The electrochemical determination of ammonium based on the selective inhibition of the low-spin iron(II)/(III) system of Prussian blue. J. Solid State Electrochem. 1:215-220.
Huang, H., and P.K. Dasgupta. 1999. A field-deployable instrument for the measurement and speciation of arsenic in potable water. Anal. Chim. Acta. 380(1):27-37.
Hug, S.J., and O. Leupin. 2003. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction. Environ. Sci. Technol. 37:2734-2742.
Jagner, D., M. Josefson, and S. Westerlund. 1981. Determination of arsenic(III) by computerized potentiometric stripping analysis. Anal. Chem. 53(13)2144-2146.
Jain, C.K., and I. Ali. 2000. Arsenic: occurrence, toxicity and speciation techniques. Wat. Res. 34: 4304-4312.
Karyakin, A.A. 2001. Prussian blue and its analogues: electrochemistry and analytical application. Electroanalysis 13: 813-819.
Keggin, J.F., and F.D. Miles. 1936. Structures and formulæ of the Prussian Blues and related compounds. Nature 137: 577-578.
Kowalska, J., and J. Golimowski. 1998. Voltammetric determination of arsenic in zinc oxide used as a feed additive. Electroanalysis (10)12:857-859.
Kowalska, J., E. Stryjewska., P. Szymanski, and J. Golimowski. 1999. Voltammetric determination of arsenic in plant material. Electroanalysis (11)17:1301-1304.
Kowalska, J., J. Golimowski, and E. Kazimierska. 2001. Determination of total and mobile arsenic content in soils. Electroanalysis. 13: 872-875.
Kowalska, J., J. Golimowski, and E. Kazimierska. 2001. Determination of total and mobile arsenic content in soils. Electroanalysis. 13(10):872-875.
Kowalska, J., K. Chalko, and E. Stryjewska. 2002. Speciation of arsenic(V) and arsenic(III) in soil extracts by cathodic stripping voltammetry. Electroanalysis. 14(21):1508-1511.
Kulesza, P.J., M.A. Malik, A. Denca, and J. Strojek. 1996. In situ FT-IR/ATR spectroelectrochemistry of Prussian Blue in the solid state. Anal. Chem. 68: 2442-2446.
Lee, S.W., and J.C. Meranger. 1981. Determination of total arsenic species by anodic stripping voltammetry. Anal. Chem. 53(1):130-131.
Leonard, A. 1991. Arsenic. In “Metals and Their Compounds in the Environment. Occurrence, Analysis, and Biological Relevance,” 2nd ed. (E. Merian, in cooperation with Clarkson et al., eds), pp. 751-773. Weinheim, VCH.
Leung, P.C., K.S. Subramanian, and J.C. Méranger. 1982. Determination of arsenic in polluted waters by differential pulse anodic-stripping voltammetry. Talanta. 29:515-518.
Lin, Z., and R.W. Puls. 2000. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process, Environ. Geol. 39(7):753-759.
Linvesey, N.T., and P.M. Huang. 1981. Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Sci. 131:88-94.
Liu, S. Q., J.J. Xu, and H.Y. Chen. 2002. Electrochemical behavior of nanosized Prussian blue self-assembled on Au electrode surface. Electrochem. Commun. 4: 421-425.
Lopes da Silva, W.T., C.T. Gautier, M.O.O. Rezende, and N.E. Murr. 2002. Electrochemical behavior of Cu(II) on carbon paste electrode modified by humic acid, cyclic voltammetry study.Electroanalysis. 14(1): 71-77.
Lund, U., and A. Fraser. 1991. Pollution of two soils by arsenic, chromium, and copper, Denmark. Geoderma 49:83-103.
Mandal, B.K., and K.T. Suzuki. 2002. Arsenic round the world: a review. Talanta. 58:201-235.
Manful, G.A., M. Verloo., and F. De Spiegeleer. 1989. Arsenate sorption by soils in relation to pH and selected anions, Pedologie, pp. 55-68.
Manning, B.A., and S. Goldberg. 1996. Modeling competitive adsorpting of arsenate with phosphate and molybdate on oxide minerals. Soil Sci. Soc. Am. J. 60:121-131.
Manning, B.A., and S. Goldberg. 1997. Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environ. Sci. Technol. 31:2005-2011.
Masscheleyn, P.H., R.D. Delaune, and W.H. Patrick Jr., 1991. Effect of redox potential and pH on arsenic speciation and solubuility in a contaminated soil. Environ. Sci. Technol. 25:1414-1418.
Matera, Virginie, and I.L. Hécho. 2001. Arsenic behavior in contaminated soils: mobility and speciation. p.207-235. In H. M. Selim and D. L. Sparks (ed.) Heavy metals release in soils. CRC press, Boca Raton, FL.
Mclean, E.O. 1982. Soil pH and lime requirement. p. 199-224. In A.L. Page (ed.) Methods of soil analysis. Part II. Chemical and microbiological properties. 2nd ed., Amer. Soc. Agron., Madison.
McGeegan, S.L., and D.V. Naylor. 1994. Sorption and redox transformation of arsenite and arsenate in two flooded soils. Soil Sci. Soc. Am. J. 58:337-343.
Merry, R.H., K.G. Tiller, and A.M. Alston. 1983. Accumulation of copper, lead, and arsenic in some Australian orchard soil. Aust. J. Soil Res. 21: 549-561.
National Research Council of Canada. 1978. Effects of arsenic in the Canadian environment. NRCC no. 15391. Orrawa, Canada.
Neff, V.D.. 1978. Electrochemical oxidation and reduction of thin films of Prussian Blue. J. Electrochem. Soc. 125:886-887.
Neff, V.D., D. Ellis, and M. Eckhoff. 1981. Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J. Phys. Chem. 85(9)1225-1231.
Nechitayilo, V.B., V.I. Styopkin, Z.A. Tkachenko, and Y.G. Goltsov. 1995. Structure and electrochromic properties of ferric aquapentacyanoferrate─A new analogue of Prussian Blue. Electrochim. Acta. 40: 2501-2504.
Nelson. D.W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. P.539-579. In A.L. Page (ed.) Methods of soil analysis. Part II. Chemical and microbiological properties. 2nd ed., Amer. Soc. Agron., Madison.
Nriagu, J.O. 1994. Arsenic: Historical perspectives. In “Arsenic in the Environment: Part I. Cycling and Charaterization,” (J.O. Nriagu, ed.), pp. 3-15. Wiley & Sons, New York.
Nriage, J.O., and J.M. Pacyna. 1988. Quantitive assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333: 134-139.
Ogura, K., M. Nakayama, and K. Nakaoka. 1999. Electrochemical quartz crystal microbalance and in situ infrared spectroscopic studies on the redox reaction of Prussian
Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. p.403-430. In A.L. Page (ed.) Methods of soil analysis. Part II. Chemical and microbiological properties. 2nd ed., Amer. Soc. Agron., Madison.
O’Neill, P. 1990. Arseic. In “Heavy Metals in Soils,” (B. J. Alloway, ed.), pp. 83-99. Blackie, London.
Onken, B.M., and L.R. Hossner. 1995. Plant Uptake and determination of arsenic species in soil solution under flooded conditions. J. Environ. Qual. 24:373-381.
Onken, B.M., and L.R. Hossner. 1996. Determination of arsenic species in soil solution under flooded conditions. Soil Sci. Soc. Am. J. 60:1385-1392.
Oscarson, D.W., P.M. Huang, C. Defosse, and Herbillon. 1981. Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terristrial and aquatic environments. Nature 291:50-51.
Pierce, M.L., and C.B. Moore. 1980. Adsorption of arsenite and arsenate on amorphous iron hydroxide from dilute aqueous solutions. Environ. Sci. Technol. 14:214-216.
Pierce, M.L., and C.B. Moore. 1982. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 16:1247-1253.
Prakash, R., R.C. Srivastava, P.K. Seth. 2003. Direct estimation of total arsenic using a novel metal side disk rotating electrode. Electroanalysis 15(17):1410-1414.
Rasul, S.B., A.K.M. Munir, Z.A. Hossain, A.H. Khan, M. Alauddin, and A. Hussam. 2002. Electrochemical measurement and speciation of inorganic arsenic in groundwater of Bangladesh. Anal. Chem. 58(1):33-43.
Rhoades, J.D. 1982a. Soluble salts. p.167-179. In A.L. Page (ed.) Methods of soil analysis. Part II. Chemical and microbiological properties. 2nd ed., Amer. Soc. Agron., Madison.
Robin, M.B. 1962. The color and electronic configurations of Prussian Blue. Inorg. Chem. 1: 337-342.
Sadiq, M. 1997. Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut. 93:117-136.
Sadiq, M., T.H. Zaidi., and A.A. Mian. 1983. Environmental behaviour of arsenic in soils: theoretical. Water Air Soil Pollut. 20:369-377.
Sakamodo, H., Y. Susa, H. Ishiyama, T. Tomiyasu, and K. Anazawa. 2001. Determination of trace amount of total arsenic in environmental samples by hydride generation flow injection-AAS using a mixed acid as a pretreatment agent. Analytical Sciences 17:1067-1071.
Selim, H.M., and D.L. Sparks. 2001. Heavy metals release in soils. Lewis Publishers, New York..
Smedley, P.L. and D.G. Kinniburgh. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17:517-568.
Smith, E., R. Naidu, and A.M. Alston. 2002. Arsenic in the soil environment: a review. Adv. Agron.. 64:149-195.
Tamaki, S., and W. T. Frankenberger. 1992. Environmental biochemistry of arsenic. Rev. Environ. Contam. Toxicol. 124:79-104.
Thanabalasingam, P., and W.F. Pickering. 1986. Arsenic sorption by humic acids. Environ. Pollut. 12:233-246.
Thomas, G.W. 1982. Exchangeable cations. p.159-165. In A.L. Page (ed.) Methods of soil analysis. Part II. Chemical and microbiological properties. 2nd ed., Amer. Soc. Agron., Madison.
Thomsen, K.N., and R.P. Baldwin. 1989. Amperometric detection of nonelectroactive cations in flow systems at a cupric hexacyanoferrate electrode. Anal. Chem. 61: 2594-2598.
Tiller, K.G. 1992. Urban soil contamination in Australia. Aust. J. Soil Res. 30:937-957.
Van Olphen H. 1963. An introduction to clay colloid chemistry. Interscience, New York. P. 89-119.
Vaughan, G.T. 1993. Investigation Report CET/LHIR 148: The environmental chemistry and fate of arsenical pesticides in cattle tick dip sites and banana plantations. CSIRO, Division of Coal and Energy Technology, Centre for Advanced Analytical Chemistry, Sydney, Australia.
Violante, A., and M. Pigna. 2002. Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci. Soc. Am. J.66:1788-1796.
Wakao, N., H. Koyatsu, Y. Komai, H. Shimokawara, Y. Sakurai, and H. Shiota. 1988. Microbial oxidation of arsenite and occurrence of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine. Geomicrobiol. J. 6:11-24.
Walsh, L.M., and D.R. Keeney. 1975. Behaviour and Phytotoxicity of Inorganic Arsenicals in Soils. In “Arsenical Pesticides” (E. A. Woolson, ed.), pp. 35-53. Am. Chem. Soc., Washington, D.C.
Walsh, L.M., M.E. Sumner, and D.R. Keeney. 1977. Occurrence and distribution of arsenic in soils and plants. Environ. Health Perspect. 19:67-71.
Waltham, C.A., and M.J. Eick. 2002. Kinetics of arsenic adsorption on goethite in the presence of sorbed silicic acid. Soil Sci. Soc. Am. J.66:818-825.
Wild. A. 1993. Soils and the Environment: An Introduction. Cambridge University Press, Cambridge.
Wilde, R.E., S.N. Ghosh, and B.J. Marshall. 1970. The Prussian Blue. Inorg. Chem. 9(11): 2512-2516.
World Health Organization. 1981. “Environmental Health Criteria 18; Arsenic.” World Health Organization, Geneva.
Xu, H., B. Allard, and A. Grimvall. 1988. Influence of pH and organic substance on the adsorption of As(V) on geologic materials. Water Air Soil Pollut. 40:293-305.
Xu, H., B. Allard, and A. Grimvall. 1991. Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Wat. Air Soil Poll. 57-58:269-278.
Yan-Chu, H. 1994. Arsenic distribution in soils. In “Arsenic in the Environment, Part 1: Cycling and Characterization” (J. O. Nriagu, ed.), pp. 17-49. Wiley & Sons, New York.
Yong, R.N. 2001. Persistence and fate of organic chemical pollutants. p.191-217. In Geoenvironmental engineering: contaminated soils, pollutant fate, and mitigation. CRC press, Boca Raton, FL.
Zakharchuk, N.F., B. Meyer, H. Hennig, F. Scholz, A. Jaworksi, and Z. Stojek. 1995. A comparative study of Prussian-Blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian Blue. J. Electroanal. Chem. 398:23-35.
Zen, J.M. 2003. Recent update of chemically modified electrodes in analytical chemistry. Electroanalysis 15(13):1073-1087.
Zen, J.M., A.S. Kumar, and H.W. Chen. 2001. Electrochemical behavior of stable cinder/Prussian blue analogue and its mediated nitrite oxidation. Electroanalysis 13(14):1171-1178.
Zen, J.M., A.S. Kumar, and H.W. Chen. 2000. Electrochemical formation of Prussian blue in natural iron-intercalated clay and cinder matrixes. Electroanalysis 12(7):542-545.
Zen, J.M., P.Y. Chen, and A.S. Kumar. 2003. Flow injection analysis of an ultratrace amount of arsenite using a Prussian Blue-modified screen-printed electrode. Anal. Chem.. 75: 6017-6022.
Zen, J.M., S.H. Jeng, C.W. Lo, P.J. Chen, G. Ilangovan, and H.J. Chen. 1998. Proc. Natl. Sci. Commu. ROC(A). 22(4)447-455.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔