(100.26.179.251) 您好!臺灣時間:2021/04/14 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張照陽
研究生(外文):Chang Chao-Yang
論文名稱:三種不同性質土壤的有機質肥料管理策略之評估
論文名稱(外文):Evaluation of management practices of organic fertilizers in three soils with different characteristics
指導教授:陳仁炫陳仁炫引用關係
指導教授(外文):Chen Jen-Hshuan
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:有機質肥料不同性質土壤管理策略殘效
外文關鍵詞:Organic fertilizersDifferent soilManagement practiceResidual effect
相關次數:
  • 被引用被引用:6
  • 點閱點閱:561
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:179
  • 收藏至我的研究室書目清單書目收藏:0
土壤有機質含量為土壤品質的評估指標之一,所以添加有機質肥料為增加土壤中有機質含量主要的策略,惟不同特性的有機質肥料在不同性質的土壤中,其氮和磷的的礦化速率和釋放潛能並不相同。本試驗評估台灣地區較常使用的兩種有機質肥料,大豆粕和禽畜糞堆肥,施用在三種性質差異大且均為國內主要農耕土壤後,對甘藍生育的影響及養分在土壤釋出特性及其殘效,以作為在研擬不同性質土壤的大豆粕和禽畜糞堆肥的管理策略。
選用中部地區三種不同性質的土壤(強酸性陳厝寮系、偏中性大里系及石灰性圳寮系土壤),以盆栽方式種植兩作甘藍(Brassica oleracea L.;Cabbage),分別施用禽畜糞堆肥(考慮氮釋出率為20%、40%和60%)、大豆粕(考慮氮釋出率為40%、60%和80%)、化學肥料及完全不施肥的對照組;其中施用有機質肥料之處理每處理六重複,而施用化學肥料及對照組則是三重複。另於第二作時,於施用有機質肥料的處理中取其中3盆只施前作一半的有機質肥料用量,而另3盆則施入與前作相同的有機質肥料用量,再種植甘藍。待甘藍採收後測定甘藍之生育性狀(濕重、乾重)及養分吸收量,並分析土壤中養分有效性的變化。
結果顯示,在考慮作物產量和土壤養分有效性及養分和鹽分的累積效應的前提下,強酸性土壤較適合施用禽畜糞堆肥,但在有機肥料用量的抉擇上宜考慮堆肥之電導度及養分含量,以減輕負面的效應,且在第二作時宜考慮前作施用之禽畜糞堆肥的殘效,可酌予減施用量。對非強酸性亦非石灰性台中土壤而言,大豆粕的施用造成養分和鹽類累積的情況較輕微,且其甘藍產量不低於施用化學肥料者,故可考慮施用大豆粕而避免使用禽畜糞堆肥,惟大豆粕施用愈多者反有降低產量的趨勢,故在第二作時加入前作之殘效考慮,可酌予減施用量。對石灰性圳寮土壤而言,大豆粕之施用雖第一作甘藍產量略低於化學肥料處理,但無顯著之差異。施用禽畜糞堆肥之甘藍產量較化學肥料處理高但無顯著差異,但禽畜糞堆肥之施用相對地隨著施用量的增加而導致土壤鹽分及養分的累積程度愈大,故在石灰性土壤只用有機質肥料栽種甘藍而不施化學肥料時,禽畜糞堆肥和大豆粕皆可考慮施用,在施用量的抉擇上,禽畜糞堆肥需考慮其電導度及養分含量,於第二作時加入前作施用有機質肥料之殘效考慮,可予以減施用量。
The organic matter content of soil is an important index of soil quality, and the addition of organic fertilizers is the best practice to increase soil organic matter, but the release characteristics of nitrogen (N) and phosphorus (P) of organic fertilizers have been found varied with the characteristics of organic fertilizers and the soils used. The objectives of this study were to evaluate the production of cabbage and the release characteristics and their residual effect of soil nutrients amended with two organic fertilizers (soybean meal and animal manure compost) in three kinds of soils in Taiwan, in order to develop the suitable management practice of using soybean meal and animal manure compost for different soils in Taiwan.
A pot experiment with cabbage (Brassica oleracea L. ;Cabbage) was conducted, three different kinds of soils (strongly acidic Chen-tso-liao Series, slightly neutral Tali Series, calcareous Chun-Liao Series soil) were selected that located in center region in Taiwan, and applied with three rates of animal manure compost(considered the release rate of N were 20%, 40% and 60%), three rates of soybean meal(considered the release rate of N were 40%, 60% and 80%) and chemical fertilizer, respectively, a treatment without fertilizer addition was also conducted as check. The treatments of organic fertilizer addition were six replications, the treatments of chemical fertilizer and check were three replications. In addition, one half of pots of the treatments with organic fertilizers was applied with half amounts of organic fertilizers as that of first crop and other three pots were applied with the same amounts of organic fertilizer as that of first crop for the second crop. The growth of cabbage (fresh weight and dry weight) and the amount of nutrient uptake were determined, and the change in soil nutrient availabilities were also analyzed.
Results showed that animal manure compost application was a suitable management for strongly acidic soil evaluated by the yield of cabbage, the nutrient availability and the accumulation of salt in soil, however, the electrical conductivity and the nutrient contents in the animal manure compost need to be considered in order to lessen the adverse effect. In addition, the amounts of animal manure compost addition should be decreased for the second crop due to the residual effect of the compost used in the first crop. For nonstrongly acidic and noncalcareous Taichung soil, the accumulations of the salt and nutrient were slighter with the application of soybean meal, and the yields of cabbage were similar to that of chemical fertilizer treatment, therefore, soybean meal could be considered to be used but animal manure compost should be avoided to be used. However, the yield of cabbage decreased with the increasing amount of soybean meal, therefore, the amount of soybean meal used in the second crop should be reduced for considering the residual effect of soybean meal used in first crop. For calcareous Chun-Liao soil, the yields of cabbage in the first crop in soybean meal treatments were slightly lower than that of the treatment of chemical fertilizers, but there was no significant different among them. The yields of cabbage in animal manure compost treatments were higher than that of the treatment of chemical fertilizer, but no significant different was found among them, however, the content of nutrient and salt accumulation were more serious as the applied amount of animal manure compost increased. If organic fertilizer was used for cabbage production without chemical fertilizer addition, both animal manure compost and soybean meal could be selected. However, the electrical conductivity and the nutrient contents in animal manure compost need to be considered as the amount of compost was determined, and the applied amount for second crop should be decreased as the residual effect of applied organic fertilizers in the first crop was considered.
摘要…………………………………………………………..….………Ⅰ
目錄…………………………………………………………..….………Ⅴ
表次…………………………………………………………..….………Ⅵ
圖次…………………………………………………………..….………Ⅷ
附表次………………………………………………………..….………Ⅹ
壹、前言……………………………………………………..….……….1
貳、前人研究………………………………………………..….……….3
一、有機質肥料的來源及成分特性………………….….………..3
二、有機質肥料之施用對作物生長之增進效應…….….………..5
三、有機質肥料之施用對環境造成的負面效應…….….………..6
四、有機質肥料養分釋出特性及對土壤肥力之影響.….………..8
參、材料與方法…………………………………………….….………12
一、供試材料………………………………………….….………12
二、盆栽試驗………………………………………….….………13
三、分析方法………………………………………….….………15
肆、結果與討論…………………………………………….….………22
一、強酸性大肚山土壤甘藍盆栽試驗…………………………..22
二、非強酸性亦非石灰性台中土壤甘藍盆栽試驗……………..48
三、石灰性圳寮土壤甘藍盆栽試驗……………………………..70
伍、結論……...……………………………………………….………..93
陸、參考文獻…………………………………………………………..95
附錄……………………………………………………………………105
表次
表一、供試土壤之基本理化性質……………………………………..19
表二、供試有機質肥料之基本理化性質……………………………..20
表三、甘藍盆栽試驗之尿素、過磷酸鈣和氯化鉀用量及分配率…..20
表四、甘藍盆栽試驗有機質肥料之施用量(乾重)……………………21
表五、每作甘藍收穫後之大肚山土壤pH值………………………...25
表六、第二作甘藍收穫後之大肚山土壤飽和電導度值……………..26
表七、大肚山第一作甘藍之乾物產量和相對產量指數……………..42
表八、大肚山第二作甘藍之乾物產量和相對產量指數……………..43
表九、第一作大肚山甘藍植株之氮和磷吸收量及相對吸收百
分率……………………………………………………………..46
表十、第二作大肚山甘藍植株之氮、磷吸收量及相對吸收百
分率……………………………………………………………..47
表十一、每作甘藍收穫後之台中土壤pH值……………………...…50
表十二、第二作甘藍收穫後之台中土壤飽和電導度值……………..51
表十三、台中第一作甘藍之乾物產量和相對產量指數………….….64
表十四、台中第二作甘藍之乾物產量和相對產量指數………….….65
表十五、第一作台中甘藍植株之氮、磷和鉀吸收量及相對吸收
百分率…………………………………………………….….68
表十六、第二作台中甘藍植株之氮、磷和鉀吸收量及相對吸收
百分率…………………………………………………….….69
表十七、每作甘藍收穫後之圳寮土壤pH值………………………...73
表十八、第二作甘藍收穫後之圳寮土壤飽和電導度值……………..74
表十九、圳寮第一作甘藍之乾物產量和相對產量指數……………..87
表二十、圳寮第二作甘藍之乾物產量和相對產量指數……………..88
表二十一、第一作圳寮甘藍植株之氮、磷和鉀吸收量及相對吸
收百分率…………………………………………………..91
表二十二、第二作圳寮甘藍植株之氮、磷和鉀吸收量及相對吸
收百分率…………………………………………….…….92
圖次
圖一、兩作甘藍收穫後之大肚山土壤有機質含量……………….….29
圖二、第二作減施或施用和第一作同量有機質肥料之大肚山土
壤有機質含量……………………………………………….….29
圖三、兩作甘藍收穫後之大肚山土壤無機態氮濃度…………….….33
圖四、第二作減施或施用和第一作同量有機質肥料之大肚山土
壤無機態氮濃度….………………………………………….....33
圖五、兩作甘藍收穫後之大肚山土壤Labile磷濃度…………….….38
圖六、第二作減施或施用和第一作同量有機質肥料之大肚山土
壤Labile磷濃度…………………………………………….….38
圖七、兩作甘藍收穫後之大肚山土壤Bray-1磷濃度…………….…39
圖八、第二作減施或施用和第一作同量有機質肥料之大肚山土壤Bray-1磷濃度………………………………………..................39
圖九、兩作甘藍收穫後之台中土壤有機質含量………………….….53
圖十、第二作減施或施用和第一作同量有機質肥料之台中土壤有
機質含量…………………………………………………….….53
圖十一、兩作甘藍收穫後之台中土壤無機態氮濃度…………….….56
圖十二、第二作減施或施用和第一作同量有機質肥料之台中土壤
無機態氮濃度…………………………………………….….56
圖十三、兩作甘藍收穫後之台中土壤Labile磷濃度…………….….60
圖十四、第二作減施或施用和第一作同量有機質肥料之台中土壤
Labile磷濃度…………………………………………….…..60
圖十五、兩作甘藍收穫後之台中土壤Bray-1磷濃度…………….....61
圖十六、第二作減施或施用和第一作同量有機質肥料之台中土壤Bray-1磷濃度………………………………………….….61
圖十七、兩作甘藍收穫後之圳寮土壤有機質含量……………….….76
圖十八、第二作減施或施用和第一作同量有機質肥料之圳寮土
壤有機質含量…………………………………………….….76
圖十九、兩作甘藍收穫後之圳寮土壤無機態氮濃度……….…….…79
圖二十、第二作減施或施用和第一作同量有機質肥料之圳寮土
壤無機態氮濃度………………………………………….….79
圖二十一、兩作甘藍收穫後之圳寮土壤Labile磷濃度………….….83
圖二十二、第二作減施或施用和第一作同量有機質肥料之圳寮
土壤Labile磷濃度………………………………….….…83
圖二十三、兩作甘藍收穫後之圳寮土壤Olsen磷濃度……………...84
圖二十四、第二作減施或施用和第一作同量有機質肥料之圳寮
土壤Olsen磷濃度………………………………………...84
附表次
附表一、大肚山土壤種植完第一作甘藍後土壤之基本性質……….105
附表二、大肚山土壤種植完兩作甘藍後土壤之基本性質………….106
附表三、台中土壤種植完第一作甘藍後土壤之基本性質………….107
附表四、台中土壤種植完兩作甘藍後土壤之基本性質…………….108
附表五、圳寮土壤種植完第一作甘藍後土壤之基本性質………….109
附表六、圳寮土壤種植完兩作甘藍後土壤之基本性質…………….110
附表七、大肚山土壤甘藍第一作植體養分含量…………………….111
附表八、大肚山土壤甘藍第二作植體養分含量…………………….112
附表八續、大肚山土壤甘藍第二作植體養分含量………………….113
附表九、台中土壤甘藍第一作植體養分含量……………………….114
附表十、台中土壤甘藍第二作植體養分含量…….…………………115
附表十續、台中土壤甘藍第二作植體養分含量…………………….116
附表十一、圳寮土壤甘藍第一作植體養分含量…………………….117
附表十二、圳寮土壤甘藍第二作植體養分含量…………………….118
附表十二續、圳寮土壤甘藍第二作植體養分含量………………….119
王重勝。2004。葉菜類蔬菜平衡施肥策略之探研。國立中興大學土壤環境科學系碩士論文。
王銀波、趙震慶、吳正宗。1998。長期施用禽畜糞堆肥之影響。第一屆畜牧廢棄資源再生利用推廣研究成果研討會論文集。p. 144-151。台灣省政府農林廳編印。
台灣蔗田土壤肥力測定結果之評級。台糖公司自營場土壤肥力測定及其應用。
合理化施用推廣手冊(4)。2000。行政院農業委員會編印。
行政院農業委員會。2002。農業統計年報。p. 46-144。行政院農業委員會編印。
作物施肥手冊。1997。行政院農業委員會編印。
吳添益、陳仁炫。2004。不同禽畜糞堆肥的施用對土壤肥力及苦瓜生育的影響。台灣農業化學與食品科學。42(4):242-250。
李俊儀。1996。堆肥施用對強酸性土壤氮和磷礦化作用的影響與評估。中興大學土壤環境科學系碩士論文。
果樹營養與果園土壤管理研討會專輯。1990。台灣省台中區農業改良場特刊第20號。台灣省台中區農業改良場編印。
林家棻、李子純、張愛華、陳卿英。1973。長期連用同樣肥料對於土壤化學性質與稻穀收量之影響。農業研究。22:241-262。
林財旺。1998。優良禽畜糞堆肥製作。台灣省畜產試驗所四十週年所慶畜牧經營及廢棄物處理研討會論文專輯。p. 23-32。台灣省畜產試驗所編印。
林紫慧、洪崑煌。1992。土壤酸性的認識。酸性土壤特性及其改良研討會論文集。中華土壤肥料學會。p.1-49。
林滄澤。1991。不同有機物在土壤中養分釋放之研究。中興大學土壤環境科學系碩士論文。
莊作權、張宇旭、陳鴻基。1993。有機質肥料養分供應能力之評估。中華生質能源學會會誌。3-4:132-146。
莊作權、楊明富。1992。水稻-田菁-玉米輪作制度下施用堆肥對土壤肥力之影響。中國農業化學會誌。30:553-568。
張愛華。1981。本省現行土壤測定法。作物需肥診斷技術。p.9-26。台灣省農業試驗所編印。
陳仁炫、丁美幸。1993。土壤pH及磷肥施用對酸性和石灰質土壤磷生物有效性的影響。中華農業化學會誌。31(5):653-666。
陳仁炫、吳正宗、黃裕銘。2001。有機質肥料之特性及應用手冊。國立中興大學土壤調查試驗中心編印。
陳仁炫、吳振記。1998。增進土壤生產力策略下之磷循環之探討。土壤與環境。1:99-114。
陳仁炫、翁玉娥、王銀波。1994。有機質肥料的添加對土壤磷吸附特性之研究。土壤肥料試驗報告。32:332-346。
陳仁炫、翁玉娥、王銀波。1994b。強酸性土壤石灰需要量七種測定方法的評估。中國農業化學會誌。32:332-346.。
陳仁炫、趙靖豐。2003。以酸性改良劑降低石灰質土壤pH值後對土壤中磷行為的影響。台灣農業化學與食品科學。41:113-123。
陳仁炫。1993。四種有效分析法在探討台灣旱田土壤磷有效性之適宜性評估。中國農業化學會誌。31:287-297。
陳仁炫。1993。鹽害土壤的問題及其改良對策。農藥世異。116:71-87。
陳仁炫。1995。有機質肥的添加對土壤磷有效性及礦化作用之影響。中國農業化學會誌。33:533-549。
黃譯賢。1999。高磷堆肥之製作及其在強酸性土壤改良上之應用與評估。中興大學土壤環境科學系碩士論文。
詹元祐、翁銅河。1988。應用15N探測氮肥對甘蔗之效應.Ⅱ 豬糞對甘蔗吸收氮肥之影響。台灣糖業研究所研究彙報。p. 9-14。
趙震慶、蘇楠榮、王銀波。1996。有機農耕法土壤肥力之變遷。中華農學會報。新173:85-102。
歐淑蒖。2003。評估四種有機質材在不同性質土壤的氮與磷之釋出效應。國立中興大學土壤環境科學系碩士論文。
蔡宜峰、莊作權、黃裕銘。1998。利用碳酸銨萃取法估算堆肥有效氮含量應用在玉米栽培之研究。中國農業化學會誌。36(5):493-502。
蔡宜峰。1999。禽畜糞堆肥對作物生長及土壤特性之影響。農業有機廢棄物處理與應用。p. 75-87。中華生質能源學會出版。
簡宣裕、林財旺。1998。農產廢棄物堆肥製造技術研究。農產廢棄物在有機農業之應用研討會論文集。p. 1-20。桃園區農業改良場編印。
Abbot, J. L., and T. C. Tucker. 1973. Persistence of manure phosphorus in calcareous soil. Soil Sci. Soc. Am. Proc. 37:60-63.
Amer, F., and D. R.Bouldin, C. A. Black, and F. R. Duke. 1955. Characterization of soil phosphorus by anion exchange resin adsorption and 32P-equilibration. Plant Soil. 6:391-408.
Amer, F., D. R. Bouldin, C. A. Black, and F. R. Duke. 1955. Characterization of soil phosphorus by anion exchange resin adsorption and 32P-eauilibration. Plant Soil. 6:391-408.
Bitzer, C. C., and J. T. Sims. 1988. Estimating the availability of nitrogen in poultry manure through laboratory and field studies. J. Environ. Qual. 17:47-54.
Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59:39-45.
Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total. In A. L. Page et al (ed.) Methods of soil analysis. Part 2, 2nd ed. Agronomy. p.595-624.
Campbell, C. A., M. Schnitzer, J. W. B. Stewart, V. O. Biederbeck, and F. Selles. 1986. Effect of manure and P fertilizer on properties of a Black Chernozem in Southern Saskatchwan. Can. J. Soil Sci. 66:601-603.
Chae, Y. M., and M. A. Tabatabai. 1986. Mineralization of nitrogen in soils amended with organic wastes. J. Environ. Qual. 15:193-198.
Chang, C., T. G. Sommerfeldt, and T. Entz. 1991. Soil chemistry after eleven annual applications of cattle feedlot manure. J. Environ. Qual. 20:475-480.
Chen, J. H., J. T. Wu and W. T. Huang. 2001. Effects of compost on the availability of nitrogen and phosphorus in strongly acidic soils. Technical Bulletin 15:1-10. Food & Fertilizer Technology Center.
Choudhary, M., L. D. Bailey, and C. A. Grant. 1996. Review of the use of swine manure in crop production: effects on yield and composition and on soil an water quality. Waste Management & Research. 14:581-595.
Dormaar J. F., and T. G. Sommerfeldt. 1986. Effect of excess feedlot manure on chemical constituents of soil under nonirrigated and irrigated management. Can. J. Soil Sci. 66:303-313.
Dormaar, J. 1972. Seasonal patterns of soil organic phosphorus. Can. J. Soil Sci. 52:107-122.
Dormaar, J. F., and C. Chang. 1995. Effects of 20 annual application of excess feedlot manure on labile soil phosphorus. Can. J. Soil Sci. 75:507-512.
Douglas, B. F., and F. R. Magdoff. 1991. An evaluation of nitrogen mineralization indices for organic residues. J. Environ. Qual. 20:368-372.
Eghball, B. and J.F. Power. 1999. Phosphorus- and nitrogen-based manure and compost application: corn production and soil phosphorus. Soil Sci. Soc. Am. J. 63:895-901.
Eghball. B., G. D. Binford, and D. D. Baltensperger. 1996. Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application. J. Environ. Qual. 25:1339-1343.
Gale, P. M., and J. T. Gilmour. 1986. Carbon and nitrogen mineralization kinetics for poultry litter. J. Environ. Qual. 15:423-426.
Gee, G. W., and J. W. Bauder. 1986. Carbon and nitrogen mineralization kinetics for poultry litter. J. Environ. Qual. 15:423-426.
Gerke, H. H., M. Arning, and H. Stoppler-Zimmer. 1999. Modeling long-term compost application effects on nitrate leaching. Plant and Soil. 213:75-92.
Gilbertson, C. B., F. A. Norstadt, A. C. Mathers, R. F. Holt, L. R. Shuyler, A. P. Barnett, T. M. McCalla, C. A. Onstad, R. A. Young, L. A. Christensen, and D. L. Van Dyne. 1979. Animal waste utilization on cropland and pastureland: A manual for evaluating agronomic and environmental effects. USDA Utilization Research Report no. 6, Washington, DC.
Grunes, D. L., H. J. Haas, and S. H. Shih. 1955. Effect of dryland cropping on available phosphorus of Cheyenne fine sandy loam. Soil Sci. 80:127-138.
Hartl, W., B. Putz, and E. Erhart. 2003. Influence of rates and timing of biowaste compost application on rye yield and soil nitrate levels. Europ. J. Soil Biology. 39:129-139.
Haynes, R. J. 1986. The decomposition process: Mineralization, immobilization, humus formation, and degradation. p. 52-109. In R. J. Haynes (ed.) Mineral nitrogen in the plant-soil system. Academic press, New York.
Hue, N. V., and I. Amien. 1989. Aluminum detoxification with green manures. Commum. Soil Sci. Plant Anal. 20:1499-1511.
Ilacob. V. 1989. Agriculture compendium for rural development in the tropics and subtropics. Elservier Science Publishing Company Inc. 655, Avenue of the Americas New York, NY10010, U.S.A.
Jacobs, L. W. 1990. Potential hazards when using organic materials as fertilizers for crop production. ASPAC/FFTC Extension Bulletin No.313:1-29.
Khalil, R. A., and M. M. El-Shinnawi. 1989. Humification of organic matter in soil affecting availability of phosphorus from its mineral compounds. Arid Soil Research. 3:77-84.
Knudsen, O., G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. In A. L. Page et al. (ed.) Methods of soil analysis. Part Ⅱ. 2nd edition. Agronomy. 9:225-246. Published by ASA and SSSA, SSSA, Madison, WI.
Kumar, M. D., K. S. Channabasappa, and S. G.. Patil. 1996. Effect of integrated application of pressmud and paddy husk with fertilizers on yield and quality of sugarcane (Saccharum officinarum). Ind. J. Agron. 41(2):301-305.
Kwabiah, A. B., N. C. Stoskopf, C. A. Palm, R. P. Voroney, M. R. Rao, and E. Gacheru. 2003. Phosphorus availability and maize response to organic and inorganic fertilizer inputs in a short term study in western Kenya. Agriculture, Ecosystems and Environment. 95:49-59.
Landon, J.R. 1984. Booker tropical soil manual. Longman Inc, New York.
Larson, W. E., Clapp, W. H. Pierre, and Y. B. Morachan. 1972. Effects of increasing amounts of organic residues on continuous corn: Ⅱ Organic carbon, nitrogen, phosphorus, and sulfur. Agron. J. 64:204-208.
LeMare, P. H., J. Pereira, and W. J. Goedert. 1987. Effect of green manure on isotopically exchangeable phosphate in a dark-red latosol in Brazil. J. Soil Sci. 38:199-209.
Lichko, R. P., V. V. Buylov, and V. I. Steputina. 1984.The carbohydrate fraction of organic matter in floodplan soils. Translate from: Pochvovedeniye.
Lindsay, W. L. 1979. Chemical equilibria in soils . John Wiley & Sons, somerset, NJ.
Mamo, M., C. Rosen, and T. Halbach. 1999. Nitrogen availability and leaching from soil amended with municipal solid waste compost. J. Environ. Qual. 28:1074-1082.
Marschner, H. 1995. Mineral nutrition of higher plants, 2nd ed. p. 596-626. Academic Press, San Diego, California.
Martin, J. P., and D. D. Focht. 1977. Biological properties of soil. p. 114-119.In L. F. Elliott, et al (ed.) Soils for management of organic wastes and waste water. Madison, Wisconsin. USA.
Mattingly, G. E. G. 1975. Labile phosphate in soil. Soil Sci. 119:369-375.
Meek, B. D. 1974. The effect of large application of manure on movement of nitrates and carbon in an irrigated desert soil. J. Environ. Qual. 3:253-258.
Meek, B. D., L. E. Graham, T. J. Donovan, and K. S. Mayberry. 1979. Phosphorus availability in calcareous soils after high loading rates of animal manure. Soil Sci. Soc. Am. J. 43:741-744.
Meek, B. D., L. E. Graham, T. J. Donovan, and K. S. Mayberry. 1979.Long-term effects of manure on soil nitrogen , phosphorus, potassium, sodium, organic matter and water infiltration rate. Soil Sci. Soc. Am. Proc. 39:110-1102.
Murphy, J., and J. D. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27:31-36.
Nelson, D. W., and L. E. Sommers. 1982. Total carbon , organic carbon, and organic matter. P. 539-579. In A. L. Page (ed.) Methods of soil analysis. Part Ⅱ. 2nd edition. Agronomy. ASA. Madison. WI.
Olsen, S. R. 1954. Residual phosphorus availability in long-time rotation on calcareous soils. Soil Sci. 78:141-151.
Olsen, S. R., and S. A. Barber. 1977. Effect of waste application on soil phosphorus and potassium, In Soils for Management of Organic wastes and Waste Water. p. 197-215. American Society of Agronomy. Madison, WI.
Rhoades, J. D. 1982. Cation exchange capacity. In Page et al (ed.) Methods of soil analysis. Part Ⅱ. 2nd edtion. P. 149-157.
Ryan, J., S. Miyamoto, and J. L. Strodhlein. 1974. Solubility of manganese, Iron zinc as affected by applicationof sulfuric acid to calcareous soils. Plant Soil.40:421-427.
Sample, E. C., R. J. Soper, and G. J. Racz. 1980. Reactions of phosphate fertilizers in soils. p. 263-310. In F.E. Khasawnch et al (ed.) The role of phosphorus in agriculture. ASA, CSSA, and SSSA, Madison, WI.
Schulz, S., G. Tian, B. Oyewole, and S. Bako. 2003. Rice mill waste as organic manure on a degraded Alfisol. 100:221-230.
Sharpley, A. N., S. C. Chapra, R. Wedepohl, J. T. Sims, T. C. Daniel, and K. R. Reddy. 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environment. Qual., 23:437-451.
Sharpley, A. N., T. C. Daniel, J. T. Sims, and D.H. Pote. 1996. Determining environmentally sound soil phosphorus levels. J. Soil Water Conserv. 51:160-166.
Sibbesen, E. 1978. An investigation of the anion exchange resin method for soil phosphate extraction. Plant Soil. 50:60-63.
Sims, J. T. 1986. Nitrogen transformations in a poultry manure amended soil: Temperature and moisture effects. J. Environ. Qual. 15:59-63.
Smith, S. R., and P. Hadley. 1989. A comparison of organic and inorganic nitrogen fertilizers: Their nitrate-N and ammonium-N release characteristics and effects on the growth response of lettuce (Lactuca sativa L. cv. Fortune). Plant and Soil. 115:135-144.
Sommerfeldt, T. G., C. Chang, and T. Entz. 1988. Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio. Soil Sci. Soc. Am. J. 52:1668-1672.
Soumare, M., F. M. G. Tack, and M. G.. Verloo. 2003. Effects of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of Mali. Biores. Technol. 86:15-20.
Stevenson, F. J. 1986. Cycle of soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, Inc., New York.
Tejada, M., and J. L. Gonzalez. (2003). Effects of the application of a compost originating from crushed cotton gin residues on wheat yield under dryland conditions. Europ. J. Agronomy. 19:357-368.
Thorup, J. T. 1969. pH effect on root growth and water uptake by plants. Agron. J. 61:225-227.
Tisdale, S. L., W. L. Nelson, and J. D. Beaton. 1985. Micronutrients and other beneficial element in soils and fertilizers. p. 350-413. Cropping systems and soil management. p.631-676. In Soil fertility and fertilizers. MacMillan, New York.
U.S. Salinity Laboratory Staff. 1954. L.A. Richards (ed.) Diagnosis and improvement of saline and alkali soils. U.S. Dep. of Agriculture Handbook no. 60.
Van Kessel, J. S., and J. B. Reeves Ⅲ. 2002. Nitrogen mineralization potential of dairy manures and its relationship to composition. Biol. Fertil. Soils. 36:118-123.
Viekanankan, M. and E. F. Paul. 1990. Effect of large manure application on soil P intensity. Commun in Soil Sci Plant Anal. 21:287-297.
Whalen, J. K., C. Chang, G. W. Clayton, and J. P. Carefoot. 2000. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 64:962-966.
White, R. H.1979. Nutrient cycling. p. 129-143. In Introduction to the principles and practice of soil science. Blackwell Scientific Publications. Oxford. London.
Wong, J. W. C., K. K. Ma, K. M. Fang, and C. Cheung. 1999. Utilization of a manure compost for organic farming in Hong Kong. Biores. Technol. 67:43-46.
Yan, F. S. Schubert, and K. Mengel. 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem. 28:617-624.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔