(3.238.250.105) 您好!臺灣時間:2021/04/18 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王重勝
研究生(外文):Chong-Sheng Wang
論文名稱:葉菜類蔬菜平衡施肥策略之探研
論文名稱(外文):Strategy of balanced fertilization on leafy vegetables
指導教授:陳仁炫陳仁炫引用關係
指導教授(外文):Jen-Hshuan Chen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:107
中文關鍵詞:平衡施肥培育試驗盆栽試驗田間試驗
外文關鍵詞:balanced fertilizationincubation experimentpot experimentfield experiment
相關次數:
  • 被引用被引用:12
  • 點閱點閱:348
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
化學肥料和有機肥料之養分釋放特性及對土壤和作物之貢獻並不相同,擬定施用有機肥料配合化學肥料並滿足作物養分需求特性的平衡施肥策略,可兼顧經濟、高效及減輕環境衝擊等效益。
本研究之目的在於偵測禽畜糞堆肥施用後的氮和磷經時釋出特性,以擬定結合有機與無機肥培方式之平衡施肥策略,並利用盆栽甘藍和田間種植蕹菜的方式評估純化學肥料施用、純有機肥料施用及四種有機與化學肥料配合施用的處理對土壤和作物之影響。
室內培育試驗係以不同劑量禽畜糞堆肥、尿素和過磷酸鈣的施用,由結果繪出禽畜糞在不同時間之氮肥和磷肥取代能力圖和淨取代能力圖。另以作物之三要素推薦量視為作物化學肥料施用量,設計八種處理:(1)對照組(CK):不施用任何肥料的對照組;(2)化學肥料組(CF),依推薦量施用化學肥料的對照組;(3)禽畜糞堆肥組Ⅰ(N50):將禽畜糞堆肥之氮釋出率定為50 %,並依據作物氮需求施用之禽畜糞堆肥用量;(4)禽畜糞堆肥組Ⅱ(P30):將禽畜糞堆肥之磷釋出率定為30 %,並依據作物磷需求施用之禽畜糞堆肥用量;(5)禽畜糞堆肥配施化學肥料組Ⅰ(N50F):施用同N50處理的禽畜糞堆肥用量,再以化學肥料補充不足之量;(6)禽畜糞堆肥配施化學肥料組Ⅱ(P30F):施用同P30處理的禽畜糞堆肥用量,再以化學肥料補充不足之量;(7)禽畜糞堆肥配施化學肥料組Ⅲ(BF1):施用同P30處理的禽畜糞堆肥用量,並由取代能力圖,計算禽畜糞堆肥之氮和磷經時釋出量,再以化學肥料補充不足之用量;(8)禽畜糞堆肥配施化學肥料組Ⅳ(BF2):考慮土壤肥力、調整肥料用量,將禽畜糞堆肥之磷釋出率定為30 %,並依據作物磷需求施用之禽畜糞堆肥用量,並由取代能力圖計算禽畜糞堆肥之氮和磷經時釋出量,以化學肥料補充不足之量。以甘藍進行八種處理之盆栽試驗及以蕹菜進行六種處理之田間試驗(CK、CF、N50、P30、P30F和BF2)。培育試驗結果顯示,禽畜糞堆肥在大里系土壤中培育20週時,氮和磷釋出率分別為42 % 和22 %。由於生長期長短的不同,種植甘藍時,有機肥料處理對作物乾物產量和氮吸收量之提升效果較佳,種植蕹菜時則以化學肥料處理較佔優勢。滿足氮需求施用禽畜糞堆肥之處理在種植兩種作物時,均有累積土壤中可溶性鹽類和磷的現象,滿足磷需求者對氮供應均不足,若以化學肥料補充滿足磷需求之處理者,則可改善氮供應不足的現象,亦可降低鹽類和磷的累積。
此外,考慮土壤肥力,調整肥料用量之平衡施肥處理,會加強產量和氮吸收量之提升效果,但並無連帶提升負面效應。因此綜合盆栽甘藍和田間蕹菜之試驗結果,以BF2處理推薦作為葉菜類蔬菜之平衡施肥策略。
ABSTRACT
Nutrients release and contribution of organic and chemical fertilizers to soils and crops were found different, it included economic, effective and safe profits that planed a balanced fertilization strategy to satisfy the requirements of crops by applying organic fertilizers with chemical ones.
The objectives of this research were to detect the nitrogen (N) and phosphorus (P) release of animal compost applied in soils as a function of time, to plan the balanced fertilization strategy by using organic and chemical fertilizers together, and to evaluate the effects of chemical, organic, and four chemical with organic treatments on soils and crops by planting cabbages in pots and water spinaches in the field.
Laboratory incubation experiment was conducted with different added amounts of animal composts, ureas, and superphosphates, and the results were figured as a function of time for replacing or net replacing chemical fertilizers by organic ones.
The recommended N-P-K amounts were regarded as the application amounts for the chemical fertilizer treatments, and eight treatments were established: (i) check (CK): unfertilized check; (ii) chemical fertilizers (CF): fertilized check; (iii) animal compost I (N50): the applied amounts of animal compost were estimated according to the N requirement of crops and the N release rate at 50%; (iv) animal compost Ⅱ(P30): the applied amounts of animal compost were estimated according to the P requirement of crops and the P release rate at 30%; (v) animal compost with chemical fertilizers I (N50F): the applied amounts of animal compost were equal to N50 treatment, and chemical fertilizers were added to reach the recommended N-P-K amounts; (vi) animal compost with chemical fertilizers Ⅱ (P30F): the applied amounts of animal compost were equal to P30 treatment, and chemical fertilizers were added to reach the recommended N-P-K amounts; (vii) animal compost with chemical fertilizers Ⅲ (BF1): the applied amounts of animal compost were estimated according to the P requirement of crops and the P release rate at 30%, and chemical fertilizers were added to reach the recommended N-P-K amounts by calculating the N and P release amounts with net replacing figures; (viii) animal compost with chemical fertilizers Ⅳ (BF2): the applied amounts of animal compost were estimated according to the P requirement of crops and the P release rate at 30%, and chemical fertilizers were added to reach the recommended N-P-K amounts by calculating the N and P release amounts with net replacing figures, while the recommended amounts were increased or decreased according to the soil fertility. Pot cabbage experiment were conducted with eight treatments and field water spinach experiment were with six treatments (CK, CF, N50, P30, P30F, and BF2).
The results of incubation experiments showed that the N and P release rate of animal compost applied in Tali soil after 20 weeks were 42% and 22%, respectively.
Because of the different growing periods, organic fertilizer treatments resulted in higher yields and N uptake the chemical ones in planting cabbages, while chemical fertilizer treatment was better in planting water spinaches.
Animal compost application based on N needs for two crops both resulted in soil accumulation of P and soluble salts, however, application based on P needs both resulted in deficient N. Applying additional N as fertilizer, could improve the N deficiency, and lower the soil accumulation of soluble salts and P.
In addition, the balanced fertilization treatment that adjust the recommended N-P-K amounts according to soil fertility, could reinforce the improvement on yields and N uptake, however, it couldn’t arise the negative effect together. Thus, summing up the results from cabbage and water spinach experiments, BF2 treatment was recommended as the balanced fertilization strategy for leafy vegetables.
目 錄
頁次
謝誌 ……………………………………………………………………. I
中文摘要 …………………………………………………….………… II
英文摘要 …………………………………………………………….. IV
目錄 ………………………………………………………………..… VII
表次 ……………..…………………………………………………… IX
圖次 …………………………………………………………………... XI
前言 ……………………………………………………………………..1
前人研究…………………………..……………………………………..3
材料與方法 ………………………………………………………..…..10
一、 供試材料 ……………………………………………….……..10
(一)供試土壤 …………………………………….….……….…10
(二)供試肥料 ………………………………………………..…10
(三)供試作物 ………...…..………………………………..……10
二、 試驗步驟 ……………………………………………….……..13
(一)室內培育試驗 ……………………………….……..………13
(二)甘藍之盆栽試驗 …………………………………………..14
(三)蕹菜之田間試驗 ………...…..…………………………..…16
三、 分析方法 …………………………………………………..…20
(一)基本土壤性質測定 ………………….…………….…….…20
(二)有機質肥料性質測定 ………………………………..……20
(三)植體分析 ………...…..……………………….…..…..……21
結果與討論 ……………………………………………………………22
一、 培育試驗 ………………………………………………….…..22
(一)尿素施用後之土壤氮有效性的經時變化 ………………..22
(二)禽畜糞堆肥施用後之土壤氮有效性的經時變化….…...…27
(三)禽畜糞堆肥之氮肥取代效應 ………...…..…………..……33
(四)過磷酸鈣施用後之土壤磷有效性的經時變化……..….….38
(五)禽畜糞堆肥施用後之土壤磷有效性的經時變化…..……..42
(六)禽畜糞堆肥的磷肥取代效應 …………..………………….48
二、盆栽甘藍試驗 …………………………………………………54
(一)對產量之影響 …………………………..……………….…54
(二)對氮和磷吸收量之影響 ………………..………….………56
(三)對土壤肥力之影響 ……………………..…………………58
三、田間蕹菜試驗 ……………………………..………………….69
(一)對產量之影響 ………………………..………………….…69
(二)對氮和磷吸收量之影響 ……………..……………………71
(三)對土壤肥力之影響 ………………..……………….………74
結論 ……………………………………………………………………84
參考文獻 ………………………………………………………………86
附錄 …………………………………………………………………....97
參考文獻
山田裕。1988。有機農業技術的評價。農業技術。43:433-437。
山坡地土壤調查報告書(南投縣、彰化縣)。1984。農委會。
王世中、李開元。1956。台灣蔗田之和諧施肥。台糖技術專刋。2:1-56。
王銀波、黃山內、趙震慶,1996。有機農耕法作物養分吸收與殘留之評估。中華農學會報。新173:103-119。
台中縣、南投縣土壤調查報告書。1976。國立中興大學農學院土壤系。
李俊儀。1996。施用堆肥對強酸性土壤氮和磷礦化作用的影響與評估。中興大學土壤環境科學系碩士論文。
林家棻。1982。本省農田肥力(pH與有機物)之變遷。台灣省農業試驗所民國七十一年年報。第72-73頁。
林家棻、李子純、張愛華、陳卿英。1973。長期連用同樣肥料對土壤化學性質與稻穀收量之影響。農業研究。22:241-292。
林滄澤。1988。轉作雜糧作物長期肥培管理試驗。75年度農林廳土壤肥料試驗報告。第12-24頁。
翁玉娥。1993。有機質肥料的添加對磷在土壤中的轉換及有效性的影響。中興大學土壤環境科學系碩士論文。
馬清華。2001。增進蔬菜有機無機平衡肥培技術之研究。第313-317頁。有機肥料與合理化施肥研討會「土壤永續生產與環境保護」論文集。中華土壤肥料學會、國立中興大學土壤環境科學系。
陳仁炫。1993。四種有效分析方法在探討台灣旱田土壤磷有效性之適宜性評估。中國農業化學會誌。31:287-297。
陳仁炫。1993。台灣強酸性土壤磷吸附特性之研究。中國農業化學會誌。31:399-411。
陳仁炫。1995。有機質肥料的添加對土壤磷有效性及礦化作用之影響。中國農業化學會誌。33:533-549。
陳仁炫、吳振記。1999。台灣土壤生態及生產力增進之研究─增進土壤生產力策略下之磷收支循環探討。中國農業化學會誌。37:221-231。
陳仁炫、翁玉娥、王銀波。1994。有機質肥料的添加對土壤磷吸附特性影響。中國農業化學會誌。32:332-346。
曾國力。1997。施用有機複合肥料對水稻玉米輪作產量土壤肥力及養分吸收之影響。中興大學土壤環境科學系碩士論文。
黃裕銘。1978。施用尿素及硫裹尿素對土壤氮素轉變及玉米養分吸收的影響。國立中興大學土壤所碩士論文。
黃譯賢。1999。高磷堆肥之製作及其在強酸性土壤改良上之應用與評估。中興大學土壤環境科學系碩士論文。
楊明富。1991。水稻玉米輪作制度下施用堆肥對土壤肥力及作用產量之影響。中興大學土壤環境科學系碩士論文。
歐淑蒖。2003。評估四種有機質材在不同性質土壤的氮與磷之釋出效應。中興大學土壤環境科學系碩士論文。
鍾仁賜、葉美雲、張則周。1994。酸性土壤中施用有機物對作物生長及鋁錳之解毒作用。第179-197頁。台灣東部問題土壤改良研討會論文集。中華土壤肥料學會、花蓮區農業改良場。
Abbot, J.L., and T.C. Tuoker. 1973. Persistence of manure phosphours in calcareous soil. Soil Sci. Am. Proc. 37:60-63.
Amer, F., D.R. Bouldin, C.A. Black, and F.R. Duke. 1955. Characterization of soil phosphorus by anion exchange resin adsorption and 32P-equilibration. Plant Soil 6:391-408.
Anderson, G. 1980. Assessing organic phosphorus in soils. p. 411-431. In F.E. Khasawneh et al. (ed.) The role of phosphorus in agriculture. ASA, CSSA, and SSSA, Madison, WI.
Avery, D. 1999. Risk, health and environment. p. 3-18. In J. Morris and R. Bate (ed.) Fearing food. Butterworth-Heinemaan, Oxford.
Blackmer, A.M. 1987. Losses and transport of nitrogen from soils. p. 85-103. In F.M. D''Itri and L.M. Wolfson (ed.) Rural groundwater contamination. Lewis Publishers, Chelsea, Michigan.
Brady, N.C. 1984. The nature and properties of soils. p. 365-366, 633. 9th ed. Macmillan Publishing Co., New York.
Bray, R.H., and L.T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59:39-45.
Bremner, J.M. and C.S. Mulvaney. 1982. Nitrogen-total. p. 595-624. In A.L. Page et al., (ed.) Methods of soils analysis. Part 2. 2nd ed. Agron. Mongr. 9. ASA and SSSA., Madison, WI.
Cambell, C.A., M. Schnitzer, J.W.B. Stewart, V.O. Biederbeck, and F. Selles. 1986. Effect of manure and fertilizer on properties of a black Chernozem in Southern Sasktchwan. Can. J. Soil Sci. 66:601-603.
Castellanos, J.Z., and P.F. Pratt. 1981. Mineralization of manure nitrogen-correlation with laboratory indexes. Soil Sci. Soc. Am. J. 45:354-357.
Chang, C., T.G. Sommerfeldt, and T. Entz. 1991. Soil chemistry after eleven annual applications of cattle feedlot manure. J. Environ. Qual., 20:475-480.
Chao, C.C., and C.C. Young. 1994. Enhancement of denitrification by green manure. p. 145-155. In R. Laletel (ed.) Soil processes and greenhouse gas emissions. National Soil Survey Center, Nebraska, USA.
Chin, W.T., and W. Kroontje. 1963. Urea hydrolysis and subsequent loss of ammonia. Soil Sci. Soc. Amer. Proc. 27:316-318.
Comfort, S.D., K.A. Kelling, D.R. Keeney, and J.C. Converse. 1988. The fate of nitrogen from injected liquid manure in a silt loam soil. J. Environ. Qual. 17:317-322.
Costigan, P.A., and M. Heaviside. 1988. The effects of starter fertilizer on the early growth and yield of transplanted crisp lettuce on fertile soils. J. of Hort. Sci. 63:247-253.
De Boer, W., H. Duyts, and H.J. Laanbroek. 1988. Autotrophic nitrification in a fertilized heath soil. Soil Biol. Biochem. 20:845-850.
Dormaar, J. 1972. Seasonal patterns of soil organic phosphorus. Can. J. Soil Sci. 52:107-122.
Dormaar, J.F. and C. Chang. 1995. Effects of 20 annual application of excess feedlot manure on labile soil phosphorus. Can. J. Soil Sci. 75:507-512.
Duisberg, P.C. and T.F. Buehrer. 1954. Effect of ammonia and its oxidation products or rate of nitrification and plant growth. Soil Sci. 78:37-49.
Eghball, B. and J.E. Gilley. 1999. Phosphorus and nitrogen in runoff following beef cattle manure or compost application. J. Environ. Qual. 28:1201-1210.
Eghball, B. and J.F. Power. 1999. Phosphorus- and nitrogen-based manure and compost applications: corn production and soil phosphorus. Soil Sci. Soc. Am. J. 63:895-901.
Ferguson, R.B. and J.A. Nienaber. 1995. Utilization of nutrients derived from composted beef feedlot manure. p. 210-217. In C.C. Ross (ed.) Proceedings of seventh international symposium on agricultural and food processing waste. 18-20. June 1995. Chicago, IL. ASAE. St. Joseph, MI.
Fisher, W.B.Jr., and W.L. Parks. 1958. Influence of soil temperature on urea hydrolysis and subsequent nitrification. Soil Sci. Soc. Amer. Proc. 22:247-248.
Foster, S.S.D., L.R. Bridge, A.K. Geake, A.R. Lawrence, and J.M. Parker. 1986. The groundwater nitrate problem. BGS hydrogeology Report 86-2.
Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p. 404-408. In A. Klute et al. (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Mongr. 9. ASA and SSSA., Madison, WI.
Gök, M. and J.C.G. Ottow. 1988. Effect of cellulose and straw incorporation in soil on total denitrification and nitrogen immobilization at initially aerobic and permanently anaerobic conditions. Bio. Fertil. Soils.5:317-322.
Greene, C.U.S. 2000. Organic agriculture gaining ground. Agric. Outlook 270:9-14.
Grunes, D.L., H.J. Hass, and S.H. Shih. 1955. Effect of dryland copping on available phosphorus of Cheyenne fine sandy loam. Soil Sci. 80:127-138.
Haas, H.J., D.L. Grunes, and G.A. Reichman. 1961. Phosphorus changes in great plains soils as influenced by cropping and applications. Soil Sci. Soc. Am. Proc. 25:215-218.
Hamm, U., and J. Michelsen. 2000. The world grows organic. p. 507-510. In T. Alfoldi , W. Lockeretz, and U. Niggli. IFOAM 2000 Proc. 13th Int. IFOAM scientific conf. IOS, Zurich.
Harada, Y. 1990. Composting and application of animal wastes. p. 20-31. ASPAC/FFTC, Taiwan ROC, Extension Bulletin No. 311.
Harada, Y., K. Haga, T. Osada, M. Koshino. 1991a. Quality aspects of animal waste compost. p. 54-76. In Proceedings of symposium on pig waste treatment and composting. Biomass Energy Society of China.
Haynes, R.J. 1986. The decomposition process: Mineralization, immobilization, humus formation, and degradation. p. 52-109. In R.J. Haynes (ed.) Mineral nitrogen in the plant-soil system. Academic press, New York.
He, Z.L., A.K. Alva, P. Yan, Y.C. Li, D.V. Calvert, P.J. Stoffella, and D.J. Banks. 2000. Nitrogen mineralization and transformation from composts and biosolids during field incubation in a sandy soil. Soil Sci. 165:161-169.
Hornick, S.B. 1989. Use of organic amendments to increase the productivity of sand and gravel spoils: Effect on yield and composition of sweet corn. Amer. J. Altern. Agri. 3:156-162.
Horton, M.L., J.L. Wiersma, R.R. Schnabel, R.E. Beyer, and C.G. Carlson. 1981. Animal waste effects upon crop production, soil and runoff waters. USEPA Rep. 600/S2-81230. USEPA, Ada, OK.
Hoyt, P.B. and R.C. Turner. 1975. Effect of organic materials added to very acid on pH, Aluminum, exchangeable NH4+, and crop yields. Soil Sci. 119:227-237.
Hue, N.V. and I. Amien. 1989. Aluminum detoxification with green manures. Commun. Soil Sci. Plant Anal. 20:1499-1511.
Inoko, A. 1982. The composting of organic materials and associated maturity problems. ASPAC/FFTC Technical Bulletin, 71:1-20.
Inubushi, K., H. Wada, and Y. Takai. 1985. Easily decomposable organic matter in paddy soil. VI Kinetics of nitrogen mineralization in submerged soil. Soil Sci. Plant Nutr. 31:563-572.
Islam, A., and B. Ahmed. 1973. Distribution of inositol phosphate, phospholipids and nucleic acids and mineralization of inositol phosphates in some Banglandesh soils. J. Soil Sci. 24:193-198.
Jokela, W.E. 1992. Nitrogen fertilizer and Dairy manure effects on corn yield and soil nitrate. Soil Sci. Soc. Am. J. 56:148-154.
Kai, H., and k. Wada. 1979. Chemical and biological immobilization of nitrogen in paddy soils. p. 157-192 In Nitrogen and rice. Int. Rice Res. Inst.
Keeney, D.R., and D.W. Nelson. 1982. Nitrogen-Inorganic forms. p. 643-698. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Mongr. 9. ASA and SSSA., Madison, WI.
Khalil, R.A., and M.M. El-shinnawi. 1988. Humification of organic matter is soil affecting availability of phosphorus from its mineral compounds. Arid Soil research 3:77-84.
Kiss, S., and M. Simiháian. 2002. Introduction. p. 1-4. In Improving efficiency of urea fertilizers by inhibition of soil urease activity. Kluwer Academic Publishers, the Netherlands.
Knudsen, O., G.A. Peterson, and P.F. Pratt. 1982. Lithium, sodium and potassium. p. 225-246. In A.L. Page (ed.) Methods of Soil Analysis Part 2. 2nd edition. Agronomy. ASA. Madison. WI.
Kuo, S. 1981. Effects of drainage and long-term manure application on nitrogen, copper, zinc, and salt distribution and availability in soils. J. Environ. Qual. 10:365-368.
Lichko, R.P., V.V. Buylov, and V.I. Steputina. 1984. The carbohydrate fraction of organic matter in floodplan soils. Translate from: Pochvovedeniye.
Logsdon, S.D., E.L. McCoy, R.R. Allmaras, and D.R. Linden. 1993. Macropore characterization by indirect methods. Soil Sci. 155:316—324.
Lucero, D.W., D.C. Martens, J.R. Mckenna, and D.E. Starner. 1995. Accumulation and movement of phosphorus from poultry litter application on a Starr clay loam. Commun. Soil Sci. Plant Anal. 26:1709-1718.
Mafongoya, P.L., P. Barak, and J.D. Reed. 2000. Carbon, nitrogen and phosphorus mineralization of tree leaves and manure. Biol Fertil. Soils 30:298-305.
Magdoff, F.R., and T.F. Amadon. 1980. Yield trends and soil chemical changes resulting from N and manure application to continuous corn. Agro. J. 72:161-164.
Malhi, S.S., M. Nyborg, and J.T. Harapiak. 1998. Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay. Soil Tillage Res. 48:91-101.
Mathers, A.C., and B.A. Stewart. 1974. Corn silage yield and soil chemical properties as affected by cattle feedlot manure. J. Environ. Qual. 3:143-147.
McCalla, T.M. 1974. Use of animal manure wastes as a soil amendment. J. Soil Water Conserv. 29:213-216.
McLean, E.O. 1982. Soil pH and lime requirement. p. 199-224. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA. Madison. WI.
Meek, B.D., L.E. Graham, T.J. Donovan, and K.S. Mayberry. 1979. Phosphorus availability in calcareous soils after high loading rates of animal manure. Soil Sci. Soc. Am. J. 43:741-744.
Müller, C., R.J. Stevens, and R.J. Laughlin. 2003. Evidence of carbon stimulated N transformations in grassland soil after slurry application. Soil Bio. Biochem. 35:285-293.
Murphy, J., and J.D. Riley. 1962. A modified single solution method for the determination of phosphorus in natural waters. Anal. Chem. Acta. 27:31-36.
Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539-579. In A.L. Page (ed.) Methods of soil analysis. Part 2. 2nd edition. Agronomy. ASA. Madison. WI.
Paul, E.A. and F.E. Clark. 1996. Soil Microbiology and Biochemistry, Academic Press, San Diego, p. 340.
Paul, J.W., and E.G. Beauchamp. 1989. Denitrification and fermentation in plant-residue-amended soil. p. 54-76. In Pig waste treatment and composting. Biomass Energy Society of China.
Pocknee, S., and M.E. Summer. 1997. Cation and nitrogen contents of organic matter determine its soil liming potential. Soil Sci. Soc. Am. J. 61:86-92.
Pratt, P.F., L.J. Lund, and J.M. Rible. 1978. An approach to measuring leaching of nitrate from freely drained irrigated land. p. 223-273. In D.R. Nielsen et al. (ed.) Nitrogen in the environment. Academic Press, New York.
Reddy, D.D., A.S. Rao, and P.N. Takkar. 1999. Effects of repeated manure and fertilizer phosphorus additions on soil phosphorus dynamics under a soybean-wheat rotation. Bio. Fertil. Soils 28:150-155.
Reganold, J.P. 1989. Comparison of soil properties as influenced by organic and conventional farming systems. Amer. J. Altern. Agri. 3:144-155.
Sansavini, S. 1997. Integrated fruit production in Europe: Research and strategies for a sustainable industry. Sci. Hort. 68:25-36.
Schlegel, A.J. 1992. Effect of composted manure on soil chemical properties and nitrogen use by grain sorghum. J. Prod. Agric. 5:153-157.
Schrader, L.E., D. Damska, P.E. Jung Jr, and L.A. Peterson. 1972. Uptake and assimilation of ammonium-N and nitrate-N and their influence on the growth of corn (Zea mays L.). Agron. J. 64:690-695.
Sharpley, A.N., C.A. Jones, C. Gray, and C.V. Cole. 1984. Asimplified soil and plant phosphorus model: Ⅱ. Prediction of labile, organic, and sorbed phosphorus. Soil Sci. Soc. Am. J. 48:805-809.
Shieh, Y.J. and W.Y. Liao. 1987. Effect of nitrogen on growth and photosynthesis of rice plants (Oryza sativa L.). Bot. Bull. Acad Sin. 26:127-146.
Sibbesen, E. 1978. An investigation of the anion exchange resin method for soil phosphate extraction. Plant Soil 50:305-321.
Simpson, D.M.H., and S.W. Melsted. 1963. Urea hydrolysis and transformation in some Illinois soils. Soil Sci. Soc. Amer. Proc. 27:48-50.
Singh, Y., B. Singh, M.S. Maskina, and O.P. Meelu. 1988. Effect of organic manures, crop residuesand green manure (Sesbania aculeata) on nitrogen and phosphorus transformations in a sandy loam at field capacity and under waterlogged conditions. Biol. Fertil. Soils 6:183-187.
Stevenson, F.J. 1986. Carbon, nitrogen, phosphorus, sulfur, micronutrients. In Cycle of soil. John Wiley & Sons, Inc., New York.
Sutton, A.L., D.W. Nelson, D.T. Kelly, and D.L. Hill. 1986. Comparison of solid vs. liquid dairy manure applications on corn yield and soil composition. J. Environ. Qual. 15:370-375.
Tabatabai, M.A., and W.A. Dick. 1979. Distribution and Stability of pyrophosphatase in soils. Soil Biol. Biochem. 11:655-659.
Tester, C.F. 1986. Organic amendment affects on physical and chemical properties of a sandy soil. Soil Sci. 66:601-613.
Thompson, L.M., C.A. Black, and J.A. Zoellner. 1954. Occurrence and mineralization of organic phosphorus in soils, with particular reference to associations with nitrogen, carbon, and pH. Soil Sci. 77:185-196.
Tisdale, S.L., W.L. Nelson, and J.D. Beaton. 1985. Micronutrients and other beneficial element in soils and fertilizers. p. 350-413. Cropping systems and soil management. p. 631-676. In Soil fertility and fertilizers. MacMillan, New York.
Trewavas, A. 1999. Much food, many problems. Nature 402:231-232.
U.S. Salinity Laboratory Staff. 1954. L.A. Richards (ed.) Diagnosis and improvement of saline and alkali soils. U.S. Dep. of Agriculture Handbook no. 60.
Vivekanandan, M., and P.E. Fixen. 1990. Effect of large manure appliacaions on soil P intensity. Commun. Soil Sci. Plant Anal. 21:287-297.
Vogtmann, H., K. Matthies, B. Kehres, and A. Meier-Ploeger. 1993. Enhanced food quality induced by compost applications. p. 645-667. In H.A.J. Hoitnik and H.M. Keeney (ed.) Science and engineering of composting. Renaissance, Worthington, OH.
Wallingford, G.W., W.L. Powers, and L.S. Murphy. 1975. Present knowledte on the effects of land applicant of animal waste. p. 580-586. In Managing livestock wastes. 3rd Int. Symp. On Livestock Waste. ASAE, St. Joseph, MI.
Waskom, R.M. 1994. Best management practices for Colorado agriculture: an overview. Bulletion No. CM-171.
Yaacob, O., and G.J. Blair. 1980. Mineralization of 15N-labeled legume residues in soils with different nitrogen contents and its uptake by rhodes grass. Plant and soil 57:237-248.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔