跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/26 13:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:毛致中
研究生(外文):Chih-Chung Mao
論文名稱:第三液相相間轉移觸媒在三級胺聯合效應下催化鄰-羥基苯甲酸鈉酯化反應動力學研究
論文名稱(外文):Synergism Effects of Trialkylamine on Esterification of Sodium Salicylate in Third- Liquid Phase-Transfer Catalysis
指導教授:楊鴻銘楊鴻銘引用關係
指導教授(外文):Hung-Ming Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:167
中文關鍵詞:相間轉移觸媒第三液相三級胺固體觸媒四級銨鹽界面張力觸媒再生及回收
外文關鍵詞:Phase-transfer catalysicThird-liquid phaseTrialkylamineSolid catalystsTetraalkylammonium saltsInterfacial tensionRecovering of catalysts
相關次數:
  • 被引用被引用:2
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討加入三級胺為共觸媒於三液相系統,以溴化四丁基鏻為相間轉移觸媒催化鄰-羥基苯甲酸鈉之酯化反應,生成鄰-羥基苯甲酸苯甲酯。三級胺型態可分為三級胺固定在高分子擔體之固體觸媒與單純加入三級胺與有機相反應物形成四級銨鹽。本論文探討的內容包括三級胺固定在高分子擔體之固體觸媒在第三液相之共觸媒效應、三級胺之四級銨鹽生成反應及在三液相系統之界面特性,以及三級胺之四級銨鹽在三液相系統催化酯化反應之動力學研究。
首先,針對三級胺之固體觸媒對三液相系統之影響,加入固體觸媒其表面吸附水相反應物,且固體觸媒懸浮於第三液相內,因此可攜帶水相反應物至第三液相,提高反應速率至0.027 min-1左右。探討因素包括不同三級胺官能基之固體觸媒、固體觸媒用量、固體觸媒高分子擔體之交聯度和粒徑,另外,固-液-液系統之反應速率遠小於第三液相系統。轉速超過300 rpm可忽略質傳阻力。
加入液態之三級胺於第三液相系統中,三級胺會在有機相與有機相反應物形成四級銨鹽質傳至第三液相,藉著四級銨鹽本身的性質改變第三液相性質及第三液相與有機相之間的界面張力,使得反應速率產生一些變化。故三級胺之四級銨鹽生成量多寡會影響反應速率及界面張力,不同種類三級胺使界面張力改變程度有所不同,加入親水性三乙基胺之界面張力隨三級胺用量從8.92 mN/m提升至10.88 mN/m,而加入親油性三辛基胺,其界面張力從8.92 mN/m減少至4.14mN/m,探討四級銨鹽生成量之因素有不同三級胺種類,溫度效應,以及三級胺種類與用量會影響界面張力。另外,此反應為可逆反應,藉著生成四級銨鹽之平衡常數對溫度倒數之關係圖得到不同三級胺生成四級銨鹽之焓變化量:三辛基胺之:8.21 (kcal/mol),三己基胺:6.37 (kcal/mol),三丁基胺:5.61 (kcal/mol),三乙基胺:2.32 (kcal/mol)。
本文亦探討三級胺在三液相催化酯化反應之反應動力學。在動力學探討變數中,當攪拌速率超過250 rpm時,可忽略質傳阻力,產物在有機相與第三液相的分佈係數為1.02定值。不同三級胺種類的影響,以三乙基胺之反應速率最低,其產率約74.67%左右。三己基胺和三辛基胺之反應速率最高,產率值約為86.47%左右,而不加三級胺之反應其產率約83.58%左右。若單純只加三辛基胺而不加相間轉移觸媒,其反應速率很低,產率40%左右。當溫度提高,加入三級胺使有機相與第三液相之間的界面張力改變,反應對溫度的敏感性明顯地變化。加入三種三級胺之活化能數值為三丁基胺:16.79 (kcal/mol);三己基胺:17.52 (kcal/mol);三辛基胺:18.98 (kcal/mol)。加入三級胺於第三液相系統中,反應速率隨著回收次數增加而沒有任何變化。
The cocatalyst effects of trialkylamines on the esterification of sodium salicylate with benzyl bromide in a third-liquid phase-transfer catalyzed system were investigated. The types of trialkylamine included solid catalysts which trialkylamine was loaded on polymer supports and trialkylamine reacted to become tetraalkylammoniun salts with benzyl bromide. The outline of this thesis included the cocatalyst effects of solid catalysts in third-liquid phase, the formation reaction of tetraalkylamine of trialkylamine and interfacial tensions between third-liquid phase and organic phase in tri-liquid system, and the kinetics of esterification with tetraalkylammonium salts of trialkylamine in tri-lquid system.
For effects of solid catalysts of trialkylamine in tri-liquid system, sodium salicylate was absorbed on the surface of solid catalysts, which suspended in third-liquid phase, to carry about sodium salicylate into third-liquid phase and to raise reaction rate to about 0.027 min-1. The factors include different function groups of trialkylamine loaded on supports, amounts of solid catalysts, degree of crosslinking and particle size of solid catalysts. Additionally, reaction rates of solid-liquid-liquid catalyzed system were smaller than third-liquid phase catalyzed system by neglecting mass transfer resistance when agitation speed exceeded 300 rpm.
Adding trialkylamines into third-liquid phase, trialkylamines reacted to tetraalkylammoniun salts with benzyl bromide in organic phase and transferred into third-liquid phase. With properties of tetraalkylammoniun salts changing the property of third-liquid phase and interfacial tension between third-liquid phase and organic phase, the reaction rates were changed. So the amount of formation of tetraalkylammoniun salts influenced reaction rate and interfacial tensions, and the factors included different types of trialkylamine and temperature, moreover, the types and amounts of trialkylamine also influenced interfacial tension. By adding triethylamine, the interfacial tension between third-liquid phase and organic phase was from 8.92 mN/m to 10.88 mN/m with increasing amount of triethylamine, and the interfacial tension was from 8.92 mN/m to 4.14 mN/m with increasing amount of trioctylamine by adding trioctylamine. In addition, this reaction was reversible, and the enthalpy obtained by changing different types of trialkylamine forming tetraalkylammoniun salts from the relationship of the equilibrium constant for forming tetraalkylammoniun salts and temperature were: trioctylamine: 8.21 (kcal/mol); trihexylamine: 6.37 (kcal/mol); tributylamine: 5.61 (kcal/mol); triethylamine: 2.32 (kcal/mol).
The reaction mechanism and kinetic model was proposed and validated from the experimental results. When the agitation speed exceeded 250 rpm, the mass transfer resistance at the third-liquid interface could be ignored, and the distribution constant of product between third-liquid pahse and organic phase was 1.02. For the effects of different types of trialkylamine, the reaction rate by adding triethylamine was the lowest to give 74.67% of the yield, and the reaction rates by adding trihexylamine and trioctylamine were higher to give the yield 86.47%, and the yield without adding trialkylamine was 83.58%. If only adding trioctylamine and without adding tetrabutylphosphonium bromide, the reaction rate was the lowest and the product yield was about 40%. When increasing temperature, the interfacial tension between organic phase and third-liquid phase was changed by adding trialkylamine, the sensitivity of reaction rate to temperature was obviously changed, and the activation energy for three trialkylamines were: tributylamine: 16.79 (kcal/mol); trihexylamine: 17.52 (kcal/mol); trioctylamine: 18.98 (kcal/mol). By adding trialkylamine in third-liquid phase catalyzed system, the reaction rate had only very little changing with the recovering order of catalysts.
中文摘要---------------------------------------------- I
英文摘要---------------------------------------------- III
誌 謝---------------------------------------------- V
目 錄---------------------------------------------- VI
圖 目 錄---------------------------------------------- VIII
表 目 錄---------------------------------------------- XII
符號說明---------------------------------------------- XIII
第一章 緒論------------------------------------------ 1
1.1. 前言----------------------------------------- 1
1.2. 相間轉移觸媒反應簡介------------------------- 2
1.3. 第三液相觸媒反應回顧------------------------- 13
1.4. 共觸媒效應----------------------------------- 19
1.5. 酯化反應之機制------------------------------- 22
1.6. 本研究之目的與研究方法----------------------- 26
第二章 實驗部分-------------------------------------- 28
2.1. 實驗藥品------------------------------------- 28
2.2. 實驗裝置與分析儀器--------------------------- 30
2.3. 產物及觸媒中間體之合成----------------------- 31
2.4. 固體觸媒之製備------------------------------- 32
2.5. 校正曲線------------------------------------- 34
2.6. 觸媒之定量分析步驟--------------------------- 35
2.7. 界面張力分析步驟----------------------------- 35
2.8. 反應動力實驗步驟----------------------------- 37
第三章 三級胺固體觸媒在第三液相之催化動力學---------- 41
3.1. 三級胺固體觸媒物性分析----------------------- 41
3.2. 三級胺固體觸媒種類及用量之影響--------------- 44
3.3. 轉速對第三液相催化反應之效應----------------- 54
3.4. 擔體交聯度對第三液相觸媒中間體之影響--------- 57
3.5. 擔體粒徑對第三液相觸媒中間體之影響----------- 61
3.6. 結論----------------------------------------- 66
第四章 三級胺生成四級銨鹽之反應及在三液相系統之界面特性---69
4.1. 不同三級胺生成四級銨鹽之反應----------------- 69
4.2. 三級胺生成四級銨鹽之溫度效應----------------- 75
4.3. 三級胺種類對三相系統界面張力之影響----------- 83
4.4. 三級胺用量對三相系統界面張力之影響----------- 86
4.5. 結論----------------------------------------- 88
第五章 三級胺在三液相系統催化酯化反應之聯合作用------ 90
5.1. 反應機構------------------------------------- 90
5.2. 反應動力模式推導----------------------------- 91
5.3. 三級胺存在下之攪拌速率效應------------------- 97
5.4. 不同三級胺及其用量之效應--------------------- 105
5.5. 不同相間轉移觸媒之效應----------------------- 112
5.6. 有機相反應物用量之效應----------------------- 114
5.7. 溶劑種類之效應------------------------------- 116
5.8. 反應溫度之效應------------------------------- 119
5.9. 第三液相觸媒之回收程序----------------------- 133
5.10. 結論---------------------------------------- 138
第六章 總結------------------------------------------ 142
參考文獻---------------------------------------------- 145
附 錄---------------------------------------------- 152
A. 鄰-羥基苯甲基苯甲酯1HNMR圖譜----------------------- 152
B. 鄰-羥基苯甲酸化四丁基鏻1HNMR圖譜 ------------------ 153
1.Jarrousse, J.C., “The influence of Quaternary Chloride on the Reaction of Labike Hydrogen Compound and Chlorine-Substituted Chlorine Derivatives.”, C.R. Heabd. Seances Acad. Sci., C232, 1424-1434 (1951).
2.Urbanski, T., Belzecki, C., Lange, J., Makosza, M., Piotrowski, A., Serafinowa, B. and Wojmowska, H., “Preparation of disubstituted derivatives of acetonitrile”, Polish Patent, 46030 (1962).
3.Makosza, M. and Serafin, B.; (a) “Reactions of organic anions. I. Catalytic ethylation of phenylacetonitrile in aqueous medium.”, Roczn Chem., 39,1223-1231(1965); Chem Abstr, 64, 12595h (1966). (b) “Reactions of organic anions. II. Catalytic alkylation of phenylacetonitriles in aqueous medium.”, Roczn Chem., 39, 1401-1408 (1965); Chem Abstr, 64, 17474g (1966).
4.Makosza, M. and Wawrzyniewicz, M., “Reactions of organic anions. XXIV. Catalytic method for preparation of dichlorocyclopropane derivatives in aqueous medium”, Tetrahedron Lett, 4659-4662 (1969).
5.Starks, C.M., “Phase Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts”, J Am Chem Soc, 93(1), 195-199 (1971).
6.Starks, C.M., Liotta, C.L. and Halpern, M.E., “Phase-Transfer Catalysis: Fundamental Application and Industrial Perspectives”, 1st ed. New York: Chapman & Hall, 1-22 (1994).
7.Starks, C.M., “Modern Perspectives on the Mechanisms of Phase-Transfer Catalysis”, ACS Symposium Series 659. Washington, DC: American Chemical Society, 10-28 (1997).
8.Orsini, F., Pelizzoni, F., Bellini, B., Miglierini, G., and Carbohydr Res., 301, 95-109 (1997).
9.Carriers, D., Meunier, S.J., Tropper, F.D., Cao, S., and Roy, R., J Mol Catal A: Chem., 154, 9-22 (2000).
10.Hodget, P., O’Dell, R., and Lee, M.S.K., Polymer, 37, 1267-1271 (1996).
11.Tagle, L.H., Diaz, F.R., Cerda, G., Oyarzo, and M., Penafiel, G., Polymer Bull, 40, 35-42 (1998).
12.Tagle, L.H., Diaz, F.R., Cerda, G., Oyarzo, M., and Penafiel, G., Polymer Bull, 42, 627-634 (1999).
13.Dehmlow, E.V. and Dehmlow, S.S., “Phase Transfer Catalysis.”, Weinheim: Verlag Chemie (1993).
14.Starks, C.M., Liotta, C.L. and Halpern, M.E., “Phase-Transfer Catalysis: Fundamental Application and Industrial Perspectives”, 1st ed. New York: Chapman & Hall, 1-17 (1994).
15.Wcber, W.P. and Gokel, G.W., “Phase Transfer Catalysis: Organic Synthesis. “, New York: Springer-Verlag (1997).
16.Halpern, M.E., “Phase-Transfer Catalysis: Mechanisms and Synthesis.”, ACS Symposium Series 659. Washington, DC: American Chemical Society (1997).
17.Goldberg, G., “Phase Transfer Catalysis: Selected Problems and Applicatons.”. Netherlands: Gordon & Breach (1992).
18.Ohtani, N., Wilkio, C.A., Nigam, A. and Regen, S.L., Macromolecules, 14, 516-520 (1981).
19.Starks, C.M., “Phase-Transfer Catalysis. Heterogeneous Reaction Involving Anion Transfer by Quaternary Ammonium and Phosphonium”, J Am Chem Soc, 93, 195-199 (1971).
20.Makosza, M., Pure Appl Chem, 43, 439-462 (1975).
21.Makosza, M, and Bialecka, E., Tetrahedron Lett, 2, 183-186 (1977).
22.GD Yadav, and YB Jadhav., “Kinetics and Modeling of Liquid—Liquid Phase Transfer Catalysed Synthesis of p-Chlorophenyl Acetonitrile: Role of Co-catalyst in Intensification of Rates and Selectivity“, Journal of Molecular Catalysis A: Chemical, 192, 41-52 (2003).
23.Justinus, A.B., Satrio, L., and Doraiswamy, K., Chemical Engineering Science, 57, 1355 — 1377 (2002).
24.Ellwood, M., Griffiths, J., and Gregory, P., J Chem Soc. Chem Commun, 181 (1980).
25.Iwamoto, H., Sonoda, T., and Kobayash, H., Tetrahedron Lett, 4703-4706 (1983).
26.Mathias, L.J., and Vaidya, R.A., J. Am Chem. Soc, 108, 1093 (1986).
27.Asai, S., Nakamura, H., Okada, W., and Yamada, M., Chem. Eng. Sci., 50, 943-949 (1995).
28.Jwo, J.J., and Hung, S.M., Journal of Molecular Catalysis A: Chemical, 154, 55—63 (2000).
29.Dockx, J., Synthesis, 441-456 (1973).
30.Gorgoes, A., A Le Coq. Tetrahedron Lett, 4521 (1976).
31.Halpen, M., Zahalka, H.A., Sasson, Y., and Rabinovitz, M., J. Org Chem., 50, 5088 (1985).
32.Jannes, G., Baudoul, F., Borcy, A., Mommerency, S., and Vanderwegen, P., “The Influence of Water on Cyanide Displacement of 1-Halobutanes Using 18-Crown-6 as Phase Transfer Catalyst”, Journal of Molecular Catalysis A: Chemical, 107, 351-358 (1996).
33.Baj, S., Chrobok, A., and Gottwald, I., “Application of Solid—Liquid Phase Transfer Catalysis System for Peroxyester Synthesis; A Kinetic Study of Hydroperoxides Acylation in the Presence of Solid Sodium Carbonate”, Applied Catalysis A: General, 224, 89—95 (2002).
34.Yadav, G.D., and Subramanian, S., “Novelties of Solid—Liquid Phase Transfer Catalyzed Synthesis of o-Nitrodiphenyl Ether”, Journal of Molecular Catalysis A: Chemical, 209, 75-82 (2004).
35.Halpern, M., PHD thesis, Hebrew University of Jerusalem, (1983).
36.Doraiswamy, L.K., and Desikan1, S., “Enhanced Activity of Polymer-Supported Phase Transfer Catalysts”, Chemical Engineering Science, 55, 6119-6127 (2000).
37.Neumann, R., and Sasson, Y., J. Org Chem. 49, 3448-3451 (1984).
38.Volkov, A.G., “Interfacial Catalysis”, Marcel Dekker, Inc. (2003).
39.Weng, H.S., and Wang, D.H., “Tri-Liquid-Phase Transfer Catalysis”, Journal of the Chinese Institute of Chemical Engineers, 27(6), 419-426 (1996).
40.Sasson, Y., Magdassi, S., and Mason, D., “Role of a Third Liquid Phase in Phase-Transfer Catalysis”, J. Org Chem., 56, 7229-7232 (1991).
41.Weng, H.S., and Wang, D.H., “Solvent and Salt Effects on the Formation of Third Liquid Phase and the Reaction Mechanisms in the Phase Transfer Catalysis System: Reaction Between n-Butyl Bromide and Sodium Phenolate”, Chemical Engineering Science, Vol. 50, No. 21, 3477-3486 (1995).
42.Weng, H.S., and Wang, D.H., “Phase Transfer Catalytic Reaction Between n-Butyl Bromide and Sodium Phenolate - Formation of the Third Liquid Phase and Its Effect”, Journal of the Chinese Institute of Chemical Engineers, 26(3), 147-156 (1995).
43.Weng, H.S., and Wang, D.H., “Phase Transfer Catalytic Reaction Between N-Butyl Bromide and Sodium Phenolate - Kinetics of Bi- and Tri-Liquid-Phase Systems”, Journal of the Chinese Institute of Chemical Engineers, 27(3), 129-139 (1996).
44.Weng, H.S., and Hsiao, H.C., “Synthesis of 2-Phenoxyisobutyric Acid Ethyl Ester by Tri-Liquid-Phase Catalysis. 1. Analysis of Factors Affecting the Formation of a Third Liquid Phase”, Ind. Eng. Chem. Res., 38, 2911-2918 (1999).
45.Weng, H.S., Kao, S.M., and Hsiao, H.C., “Synthesis of n-Butyl Phenyl Ether by Tri-Liquid-Phase Catalysis Using Poly (ethylene glycol)-600 as a Catalyst. 1. Analysis of Factors Affecting the Formation of a Third Liquid Phase”, Ind. Eng. Chem. Res., 39, 2772-2778 (2000).
46.Goto, S., Ido, T., and Jin, G., “Effect of third-phase properties on benzyl-n-butyl ether synthesis in phase transfer catalytic system”, Catalysis Today, 64, 279-287 (2001).
47.Goto, S., Ido, T. and Jin G., “Rate Enhancement Effect of Third Liquid Phase on Dibenzyl ether Production in Solid-Liquid-Liquid Phase Transfer Catalytic System.”, Catalysis Today, 79-80, 471-478 (2003).
48.李菁菁,“第三液相相間轉移觸媒合成鄰-羥基苯甲酸苯甲酯之反應動力學研究”,中興大學化學工程研究所碩士論文,2003。
49.李淑瑞,“第三液相相間轉移觸媒催化2,4,6-三溴酚之醚化反應動力學研究”,中興大學化學工程研究所碩士論文,2003。
50.Yadav, G.D., and Reddy, C.A., “Kinetics of the n-Butoxylation of p-Chloronitrobenzene under Liquid-Liquid-Liquid Phase Transfer Catalysis”, Ind. Eng. Chem. Res., 38, 2245-2253 (1999).
51.Weng, H.S., Wang, C.M., and Wang, D.H., “A Preliminary Study on a Continuous Flow Stirred Vessel Reactor for Tri-Liquid-Phase Phase Transfer Catalysis”, Ind. Eng. Chem. Res., 36, 3613-3618 (1997).
52.Yang, H.M., ”A Theoretical Model for Phase Transfer Catalyzed Reaction with the Third-Liquid Phase”, Journal of the Chinese Institute of Engineers, Vol. 21, No. 4, 399-408 (1998).
53.Ploehn, H.J., and Krueger, J.J., “Modeling Mass Transfer and Interfacial Reactions in Three Liquid Phase Transfer Catalysis”, MD Amiridis. Ind. Eng. Chem. Res., 40, 3158-3163 (2001).
54.Saxena, P.K., “Polymerization of 1-Hexene Using Supported Magnesium/Titanium Catalyst: Effect of Cocatalyst”, European Polymer Journal, 35, 1313-1317 (1999).
55.Santos, J.H.Z., Kern, C., and Baibich, I.M.., “A Comparative Study of Hydrosilane Compounds as Cocatalystsin the Metathesis of 1-Hexene”, Journal of Molecular Catalysis A: Chemical, 136, 213-217 (1998).
56.Kawai, T., Uejima, S., Suzuki, T., and Iyoda, T., “Metathesis of Halogen-Containing Olefin over Re2O7/Al2O3 Catalyst Promoted with Alkylmetal as a Cocatalyst”, Journal of Molecular Catalysis A: Chemical, 133, 51-59 (1998).
57.Makosza, M., and Chesnokov A., “Cocatalysis in Phase-Transfer Catalyzed Base Induced β-Elimination. Model Studies of Dehydrobromination of Bromocyclohexane” Tetrahedron 56, 3553-3558 (2000).
58.Wang, M.L., Huang, T.H., and Wu, W.T., “Kinetics of the Oxidation of 5-Vinyl-2-norbornene under Two-Phase-Transfer Catalysis Conditions”, Ind. Eng. Chem. Res., 41, 518-523 (2002).
59.Maerker, G., J. F. Carmichael and W. S. Port, Glycidl Esters Method of Preparation and Study of Some reaction Variables.J. Org. Chem. 26, 2681(1961).
60.Hennis, H.E., Easterly, J.P., Collins, L.R., and Thompson, L.R., “ Ester from the Reaction of Alkyl Halidea and Salts of Carboxylic Acid. Reaction of primary Alkyl Chlorides and sodium salts of Carboxylic Acid”, Ind. Eng. Chem. Prod. Res. Dev. 6, 193-195 (1967)
61.吳和生,”相轉移觸媒催化技術講義”,元智大學化工系 (2002)。
62.許豪麟,” 以固定化相間轉移觸媒催化苯甲酸鈉之酯化反應動力學研究”,中興大學化學工程研究所碩士論文, (2003)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 魏麗敏(1989)。國小學生數學焦慮、數學態度與數學成就之關係。中國測驗學會測驗年刊,36,47-60。
2. 謝哲仁(2003已接受)。從可操作動態視覺化基本函數之微分設計談動態微積分新的學習方法。數學傳播。
3. 謝哲仁(2002 a)。基本統計學之動態電腦教學設計。美和技術學院學報,20期,142-160頁。
4. 謝哲仁(2001)。動態電腦幾何教學建構之研究。美和技術學院學報,19期,199-211頁。
5. 謝哲仁(2000)。電子試算表在高中數學教學之可行性研究。美和技術學院學報,18期,118-128頁。
6. 鄭晉昌(1997)。視覺思考及科學概念的獲取--設計與發展電腦輔助視覺學習環境。教學科技與媒體,33期,20-27頁。
7. 鄭晉昌(1993 b)。自「情境學習」的認知觀點探討電腦輔助教學中教材內容的設計-從幾個學科教學系統談起。教學科技與媒體,12期,3-14頁。
8. 鄭晉昌(1993 a)。電腦輔助學習的新教學設計觀─認知學徒制。教育資料與圖書館學,第31卷,第一期,55-66頁。
9. 蔣德勉(1983)。電腦輔助教學的發展。科學教育月刊,64期,第25-31頁。
10. 葉東進(1990)。數學實驗-高中數學的啟發式教學。科學教育月刊,130,2-20。
11. 溫明正(2000)。資訊科技融入各科教學之應用。教學科技與媒體,50期,54-61。
12. 曾振家、謝哲仁(2002)。多重表徵情境學習分數加法概念之設計。教學科技與媒體,60期,頁94-102。
13. 林義男(1993)。國中學生家庭社經背景、父母參與及其學業成就的關係。國立台灣教育學院輔導學報,第16期,157-211。
14. 全任重(1996)。圓規,直尺與 Cabri-geometers。數學傳播20卷1期。