跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/22 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴永銘
研究生(外文):yum-ming dai
論文名稱:多壁奈米碳管擔持Pt於直接甲醇燃料電池
論文名稱(外文):Supported Pt on multiple wall Carbon Nanotube for the electrode application of Direct Methanol Fuel Cell
指導教授:鄭紀民
指導教授(外文):Jih-Mirn Jehng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:奈米介金屬鎂-鎳合金奈米碳管成長反應奈米碳管純化甲醇燃料電池電極觸媒
外文關鍵詞:Mg-Ni alloyCVDPurification of CNTsDirect MethanolCatalyst of electrode
相關次數:
  • 被引用被引用:2
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
對以奈米介金屬鎂-鎳合金為催化劑成長奈米碳管的反應而言,根據XRD、TGA、TEM結果顯示,成長奈米碳管的最適化條件為:取奈米鎂-鎳合金為催化劑,於650℃下通入流量為100 ~ 120 sccm的純甲烷,進行熱裂解生成奈米碳管。經由拉曼光譜分析顯示,所製備之奈米碳管皆屬多壁奈米碳管。純化研究結果顯示,將奈米碳管初產物以空氣氧化及鹽酸處理後,其純度幾乎達到100%。在一系列的純化步驟中,奈米碳管的純化完全與否取決於空氣氧化步驟,因為空氣氧化可以使石墨層進行修飾,並使鹽酸容易進入石墨層中將殘存的催化劑溶出。
提昇甲醇燃料電池中觸媒的活性,最好的方法就是將觸媒中之Pt降低顆粒大小及提高其分散性。由FE-SEM、XRD結果得之,在120℃下所製備之白金電極觸媒,其Pt擔持在奈米碳管上的顆粒約在5nm以下,並由電化學分析結果其放電量是最大,顯示電極觸媒放電量與Pt分散性及粒徑大小是相關,分散越均勻、粒徑越小,其放電量越高。
奈米碳管與一般碳黑(m-1100)之比較,發現奈米碳管擔持Pt
後的放電量的明顯的比碳黑擔持Pt後的放電量還大,顯示奈米碳管
有取代傳統碳材的機會。
As for the CNT growth over nano-Mg-Ni alloys, the results of XRD, TGA,TEM that the optimum reaction condition nano-Mg-Ni alloy as the catalyst to perform pyrolysis of 100% CH4 to form CNTs with the flow rate about 100 ~ 120 sccm at 650℃. Raman results also indicate that the CNTs are formed as the multi-walled structure. After the purified procedures with both air oxidation at 550℃ and HCl treatment, the purity of CNT reaches to ~100%. Thus, the air oxidation step is crucial for the completed purification. The oxidation with flowing of air at high temperature can reorganize the graphite interlayers and makes the HCl easily to penetrate into the graphite interlayers to dissolve the residual catalyst.
Good methods for increasing activity of catalyst in direct methanol fuel cells are decreasing the particle size of Pt and improving its dispersion. FE-SEM and XRD results indicate that the particle size of Pt supported on CNTs of electrode which synthesis under 120℃ is below 5nm and electrochemical analysis indicates the value of discharge is the best reveals the discharge is related to dispersion and the particle size of Pt.
Compared with Pt supported on carbon black shows the value of discharge of Pt supported on CNTs is much better reveals CNTs have chance to take the place of traditional carbon material.
目 錄
摘 要 ............................................................................................................................I
ABSTRACT ................................................................................................................. II
目 錄 ......................................................................................................................... III
圖目錄 .............................................................................................................................................. III
表目錄............................................................................................................................................... III
第一章 前言..................................................................................................................1
1-1 研究目的.......................................................................................................1
1-2 研究架構.......................................................................................................3
第二章 文獻回顧..........................................................................................................4
2-1 奈米介金屬合金的...................................................................................4
2-2奈米鎂-鎳介金屬合金的製備.....................................................................6
2-2-1醇還原法的製備介金屬之原理.........................................................8
2-3化學氣相沈積法成長奈米碳管 .................................................................10
2-3-1多壁奈米碳管成長的反應機構 ......................................................14
2-4奈米碳管的純化.........................................................................................16
2-5甲醇燃料電池電極觸媒之研究.................................................................17
2-5-1製程與檢測技術介紹......................................................................18
2-5-2燃料電池之觸媒..............................................................................23
2-5-2-1陽極觸媒............................................................................24
2-5-2-2陰極觸媒............................................................................25
2-5-3直接將甲醇氧化的燃料電池系統觸媒..........................................26
2-5-3-1觸媒載體...........................................................................27
2-5-3-2電極觸媒...........................................................................29
第三章 研究方法........................................................................................................32
3-1實驗藥品 ....................................................................................................32
3-2觸媒製備 ....................................................................................................32
3-2奈米碳管之合成..........................................................................................33
3-3-1實驗裝置 ......................................................................................33
3-3-2奈米碳管的成長……………………………….............................. 34
3-4奈米碳管之純化..........................................................................................35
3-5 電極觸媒之製備……………………………………………………….....35
3-6奈米碳管與電極觸媒之分析儀器之簡介..................................................36
3-6-1穿透式電子顯微鏡及電子繞射分析 (TEM and diffraction pattern)...........................................................................................36
3-6-2場發射掃描式電子顯微鏡(Filed Emission Scanning Electron
Microscope,FE-SEM).................................................................38
3-6-3熱重分析(Thermogravimetric analysis,TGA) ...........................38
3-6-4粉末X光繞射分析(X-ray powder diffraction) ...........................39
3-6-4拉曼光譜儀Raman .....................................................................41
3-6-4電池電化學分析 .............................................................................43
第四章 結果與討論 ....................................................................................................44
4-1奈米碳管製備與分析 ................................................................................44
4-2奈米碳管之純化結果……………………………….................................47
4-2-1空氣氧化對奈米碳管純化之結果……………................................47
4-2-2酸洗對奈米碳管純化之結果……………........................................54
4-3電極觸媒之特性與測試 ............................................................................61
4-3-1電極觸媒之製備及分析..................................................................61
4-3-2還原溫度對Pt擔持在奈米碳管的影響……................................64
4-3-3電極觸媒之測試 ..............................................................................69
第五章 結論與建議 ....................................................................................................72
參考文獻 ......................................................................................................................74
圖目錄
圖1-1 研究流程圖........................................................................................................3
圖2-1 電弧放電法成長奈米碳管的設備示意圖......................................................11
圖2-2 雷射蒸發法成長奈米碳管的設備示意圖......................................................12
圖2-3 化學氣相沈積法成長奈米碳管的設備示意圖..............................................12
圖2-4 奈米碳管的底部生長模式..............................................................................15
圖2-5 奈米碳管的頂部生長模式..............................................................................16
圖2-6燃料電池之反應...............................................................................................20
圖2-7質子交換膜電池中由碳與鉑所組成之陽極觸媒與陰極觸媒的示意圖…...23
圖3-1實驗裝置...........................................................................................................33
圖3-2成長奈米碳管反應時間與溫度關係...............................................................34
圖3-3電子顯微鏡構造示意圖...................................................................................37
圖3-4 Renishaw Raman system 2000..................................................................42
圖4-1鎂-鎳合金成長奈米碳管之TEM結果...........................................................44
圖4-2鎂-鎳合金奈米碳管的XRD分析結果.............................................................45
圖4-3奈米碳管的TGA分析結果.............................................................................46
圖4-4奈米碳管在不同氧化溫度下重量之變化.......................................................48
圖4-5奈米碳管不同氧化溫度下拉曼分析之結果...................................................49
圖4-6奈米碳管在不同氧化時間重量之變化……………………….......................51
圖4-7奈米碳管在不同氧化時間下拉曼之結果........................................................51
圖4-8奈米碳管經過空氣氧化後之影響...................................................................53
圖4-9酸洗奈米碳管之TEM分析結果.................................................. …................56
圖4-10奈米碳管經過酸洗後XRD之分析結果...........................................................57
圖4-11氧化後奈米碳管在不同酸洗時間下殘存之觸媒量變化..............................59
圖4-12奈米碳管純化前後之TEM結果...................................................................... 60
圖4-13奈米碳管擔持Pt之TEM結果.......................................................................61
圖4-14奈米碳管擔持Pt之XRD分析結果................................................................62
圖4-15奈米碳管擔持Pt之TGA分析結果...............................................................63
圖4-16奈米碳管擔持Pt在不同溫度下之TEM分析結果.......................................65
圖4-17奈米碳管擔持Pt(160℃)之FE-SEM結果................................................66
圖4-18奈米碳管擔持Pt(140℃)之FE-SEM結果................................................67
圖4-19奈米碳管擔持Pt(120℃)之FE-SEM結果................................................67
圖4-20不同溫度下Pt擔持於奈米碳管之XRD分析結果........................................68
圖4-21奈米碳管擔持Pt半電池電化學分析...........................................................70
圖4-22不同溫度下Pt擔持於奈米碳管半電池電化學分析....................................70
圖4-23碳黑及奈米碳管半電池電化學分析.............................................................71
表目錄
表2-3 Ni(OH)2或Co(OH)2於乙二醇中還原為金屬微粒之反應機制.....................9
表4-1奈米碳管在不同溫度氧化下損失的重量百分比...........................................48
表4-2奈米碳管在不同氧化時間下損失的重量百分比…………….......................51
表4-3不同溫度下Pt擔持於奈米碳管之粒徑大小 ................
[1] 陳嘉銘,奈米鎂-鎳合金於加氫/脫氫反應的應用:PEG胺化反應
及奈米碳管的成長,國立中興大學化學工程學系博士論文,2004.
[2] 山口正治及馬越佑吉著,丁樹深譯,“金屬間化合物”,科學出版社,北京,1991.
[3] 尹衍升、張金生、李嘉、劉英才、譚訓彥、龔紅宇等,“新型半陶瓷材料─金屬間化合物及其應用”,中國陶瓷,38(1), p.42,1992.
[4] 張立德及牟季美,“奈米材料和奈米結構”,科學出版社,北京,2001.
[5] C. Suryanarayana. “Mechanical alloying and milling.” Prog. Mater. Sci, 46(1/2), 1, 2001.
[6] 楊華明及邱冠周,“機械合金化(MA)技術的新進展”,稀有金屬,22(4),p.316,1998.
[7] 新宮秀夫,日本金屬學會會報,27(10),238,1988.
[8] J. Eckert, J. C. Halzer, C. E. Krill III, and W. L. Johnson. “Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders.” J. Appl. Phys, 73(6), p.2794, 1993.
[9] F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, M. Figlarz. “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles.” Solid State Ionics, 32/33, p.198, 1989.
[10] L. K. Kurihara, G. M. Chow, and P. E. Schoen. “Nanocrystalline metallic powders and films produced by the polyol method.” NanoStructured Mater, 5(6), p.607, 1995.
[11] M. S. Hegde, D. Larcher, Dupont, B. Beaudoin, K. Tekaia-Elhsissen, J. M. Tarascon. “Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders.” Solid State Ionics, 93(1/2), p.33, 1997.
[12] P. Y. Silvert, R. Herrera-Urbina, N. Davauchelle, V. Vijayakrishnan, and K. Tekaia-Elhsissen. “Preparation of colloidal silver dispersions by the polyol process. Part 1. - Synthesis and characterization.” J. Mater. Chem, 6(4), p.573, 1996.
[13] P. Y. Silvert, R. Herrera-Urbina, N. Davauchelle, V. Vijayakrishnan, and K. Tekaia-Elhsissen. “Preparation of colloidal silver dispersions by the polyol process. Part 2. — Mechanism of particle formation.” J. Mater. Chem, 7(2), p.293, 1997.
[14] S. Ayyappan, R. Srinivasa-Gopalan, G. N. Subbanna, and G. N. R. Rao. “Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts.” J. Mater. Res, 12(2), p.398, 1997.
[15] G. M. Chow, L. K. Kurihara, K. M. Kemner, P. E. Schoen, W. T. Elam, A. Ervin, et al. “Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process.” J. Mater. Res, 10(6), p.1546, 1995.
[16] G. M. Chow, T. Ambrose, J. Xiao, M. E. Twigg, S. Baral, A. Ervin, et al. “Chemical precipitation and properties of nanocrystalline Fe-Cu alloy and composite powders.” NanoStructured Mater, 1, p.361, 1992.
[17] G. M. Chow, T. Ambrose, J. Xiao, F. Kaata, and A. Ervin. “Nanostructured Co-Cu powders via a chemical route.” NanoStructured Mater., 2,p. 131, 1993.
[18] 王正全,鈀奈米粒子之製備與應用,國立成功大學化學工程學系博士論文,2001.
[19] F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, M. Figlarz. “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles.” Solid State Ionics, 32/33, p.198, 1989.
[20] P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley. “Nanotube nanodevice.” Science, 278, p.100, 1997.
[21] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff. “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load.” Science, 287, p.637, 2000.
[22] P. Y. Silvert, R. Herrera-Urbina, N. Davauchelle, V. Vijayakrishnan, and K. Tekaia-Elhsissen. “Preparation of colloidal silver dispersions by the polyol process. Part 1. - Synthesis and characterization.” J. Mater. Chem, 6(4), p.573, 1996.
[23] P. Y. Silvert, R. Herrera-Urbina, N. Davauchelle, V. Vijayakrishnan, and K. Tekaia-Elhsissen. “Preparation of colloidal silver dispersions by the polyol process. Part 2. — Mechanism of particle formation.” J. Mater. Chem, 7(2), p.293, 1997.
[24] J. Kong, N. R, Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, et al. “Nanotube molecular wires as chemical sensors.” Science, 287, p.622, 2000.
[25] Walt A. de Heer, A. Châtelain, and D. Ugarte. “A Carbon Nanotube Field-Emission Electron Source.” Science, 270, p.1179, 1995.
[26] K. Jurewicz, S. Delpeux, V. Bertagna, F. Béguin, and E. Frackowiak. “Supercapacitors from nanotubes/polypyrrole composites.” Chem. Phys. Lett, 347(1-3), p.36, 2001.
[27] H. Dai, J. H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley. “Nanotubes as nanoprobes in scanning probe microscopy.” Nature, 384, p.147, 1996.
[28] S. Iijima. “Helical microtubules of graphitic carbon.” Nature, 354, p.56, 1991.
[29] Y.Saito. “Nanoparticles and filled nanocapsules.” , Carbon, 33, p. 979, 1995
[30] Erik.T.Thostenson, Zhifeng.Ren,Tsu-Wei.Chou. “Advances in the science and technology of carbon nanotubes and their composites: a review.” Composites Science and Technology 61,p.1899, 2001.
[31] T.Guo, P.Nikolaev, A.Thess, D.T.Colbert, R.E.Smally,“Catalytic growth of single-walled nanotubes by laser vaporization.” Nature, 363, p.605, 1993.
[32] C Philip G.Collins and Phaedon Avouris, “Nanotubes for electronics .” , Scientific American p.62 December 2000
[33] R.Sen,A.Govindaraj,and C.N.R.Rao, “Carbon nanotubes by the
metallocene route.” Chem.Phys.Lett. 267.276(1997)
[34] S.Fan,M.G.Chaplin,N.R.Franklin,T.W.Tombler,A.M.Cassell and H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties.”Science 283,512(1999)
[35] Z.F.Ren,Z.P.Huang,J.H.Wang,P.Bush,M.P.Siegal,and P.N.Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass.” Science 282,1105(1998)
[36] K. Hernadi, A. Fonseca, J. B. Nagy, D. B. Bernaerts, A. Fudala, and A. A. Lucas AA. “Catalytic synthesis of carbon nanotubes using zeolite support.” Zeolites, 17(5/6), p.416, 1996.
[37] A. Oberlin, M. Endo, and T. Koyama. “Filamentous growth of carbon through benzene decomposition.” J. Cryst. Growth, 32,p. 335, 1976.
[38] O. A. Louchev, and Y. Sato. “Nanotube self-organization: Formation by step-flow growth.” Appl. Phys. Lett, 74(2), p.194, 1999.
[39] S. Iijima, P. M. Ajayan, and T. Ichihashi. “Growth model for carbon nanotubes.” Phys. Rev. Lett, 69(21), p.3100, 1992..
[40] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, E. C. Dickey, and F.
Derbyshire. “Model of carbon nanotube growth through chemical vapor deposition.” Chem.Phys.Lett, 315(1-2), 25, 1999.
[41] C. Laurent, E. Flahaut, A. Peigney, and A. Rousset. “Metal nanoparticles for the catalytic synthesis of carbon nanotubes.” New J. Chem. 22(11), p.1229, 1998.
[42] 林敬东等. “碳纳米管的制备及其在催化中的应用.”天然氣化工,21,p.45, 2001.
[43] Shelimov KB ,Esenaliev R O ,Rinzler A G . “ Purification of single-wall carbon nanotubes by ultrasonically assisted filtration .” Chem Phys Lett , 282 p.429. , 1998
[44] Bronikowski, J. L. Margrave,R. E. Smalley, and R. H. Hauge.
“Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process).” J. Phys. Chem. 105, p.8297, 2001
[45] 杨占红,李新海,李晶,等. “碳纳米管纯化技術研究.”中南工業大學學報,30 (4) p. 389 , 1999
[46] 燃料電池論文集,p.6. 6月,1999
[47] 陳陵援,科學發展,370期,p.24,2003
[48] 廖敏彥等,“直接甲醇燃料電池電極觸媒”,工業材料雜誌,193期,p.76,2003.
[49] 奈米國家型科技計畫商機探討暨成果發表會,p.181.
[50] 廖敏彥等,“直接甲醇燃料電池電極觸媒”,工業材料雜誌,196期,p.138,2003.
[51] 高志勇等,“直接甲醇燃料電池製程技術發展現況”,工業材料雜誌,193,p.111, 2003.
[52] Li. W. Liang, C. Zhou, W. Qiu, J. Zhou, Z. H. Sun, G. Xin, Q. “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells.” J. Phys. Chem. B.; 107, p,6292, 2003
[53] Li. Wenzhen, Liang. Changhai, Qiu. Jieshan, Zhou. Weijiang, Han. Hongmei, Wei. Zhaobin, Sun. Gongquan, “Carbon nanotubes as support for cathode catalyst of a directmethanol fuel cell.” Carbon. 40, p.787, 2002
[54] 郭朝皓,金屬矽酸鹽觸媒於奈米碳管之應用,國立中興大學化學工程學系碩士論文,2003.
[55] 陳力俊等,材料電子顯微鏡學,科儀叢書,1994
[56] 陳家全,李家維,楊瑞森,生物電子顯微鏡學,貴儀中心,1991
[57] 林智仁,“材料分析技術專題”,工業材料雜誌,181期,p.94,2002.
[58] 洪郁婷,氮化物的奈米結構,國立臺灣大學化學工程學系碩士論文,2001.
[59] 柯以侃,吳明珠,儀器分析(熱分析法),文京圖書有限公司,1999
[60] 許樹恩、吳泰伯,X光繞射原理與材料結構分析 ,中國材料科學學會,1993
[61] 廖敏彥等,“微燃料電池專題”,工業材料雜誌,202期,p.145,2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 譚寧君 ( 民 84 )。面積概念探討。國民教育,35 ( 7、8 ),14-19。
2. 羅素貞 ( 民85 )。問題表徵與問題解決。屏東師院學報,9,149-176。
3. 蕭見文 ( 民 85 )。數學解題策略教學之研究。國立高雄師範大學教育學系教育學刊,12,367-398。
4. 楊志堅、陳濱興 ( 民 88 )。國小數學解題實作評量編製研究。測驗統計簡訊,32,14-25。
5. 黃敏晃 ( 民 76 )。如何解數學題?數學解題策略簡介。科學月刊,18,515-522。
6. 張新仁 ( 民 78 )。不同學科的認知歷程分析。教育研究,3,43-59。
7. 張景媛 ( 民 83 )。數學文字題錯誤概念分析及學生建構數學概念的研究。教育心理學報, 27,175-200。
8. 秦麗花 ( 民 84 )。國小數學學障兒童數學解題錯誤類型分析 。特殊教育季刊,55,33-38。
9. 林碧珍 ( 民 80 )。經由數學解題啟發數學的理解。國教世紀,27 ( 3 ),2-5。
10. 杜佳真 ( 民 88 )。數學文字題的表徵教學策略。科學教育研究與發展季刊,15,59-67。
11. 吳德邦、馬秀蘭 ( 民 76 )。以問題解決為導向的數學教學模式。國教輔導,26 ( 9、10 ),7-20。
12. 吳柏林、謝名娟 ( 民 90 )。從國中基本學力測驗看九年一貫數學科教材教法。教育研究,86,77-89。
13. 吳明隆 ( 民 88 )。數學教育歷程中性別學習差異的探究。國教之友,51 (1),12-23。
14. 古明峰 ( 民 88 )。加減法文字題語意結構、問題難度及解題關係之探討。新竹師院學報,12,1-25。
15. 古明峰 ( 民 87 )。數學應用題的解題認知歷程之探討。教育研究資訊, 6(3), 63-77。