跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇奕菘
研究生(外文):Yi-Song Su
論文名稱:次臨界水層析法熱力學研究及分離機制初探
論文名稱(外文):Separation of chlorophenols by subcritical water chromatography and its thermodynamic studies
指導教授:鄭政峰鄭政峰引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:131
中文關鍵詞:次臨界水高效液相層析氯酚類化合物綠色分析方法
外文關鍵詞:Subcritical waterHPLCChlorophenolsGreen analytical method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:1
次臨界水層析法為界於液相層析與氣相層析間的分析方法,其藉由控制系統壓力和溫度可以有效改變處於次臨界狀態下動相水的極性、黏度及表面張力等物性,進而達到改善物質分離選擇性的目的。有關其熱力學性質的研究對於分離系統設計及發展為具實用性的快速分離方法具有非常重要的意義。
本研究對傳統液相層析儀加以改裝,採用自行設計的預熱管、柱溫箱、限流器等元件,以PS-DVB爲層析分離柱管,配合UV偵測器,建構了一套可以長期穩定運行,操作簡便的次臨界水層析系統。
研究中藉由對可解離溶質於次臨界水層析中相轉移機制的探討,說明溶質在動相和靜相之間遷移的特徵。採用Van’t Hoff 方程式對溶質在兩相間遷移過程中熵、焓、熱容、自由能等熱力學參數加以計算,也透過對一次式與二次式的對比研究,闡明了兩種計算方法之間的差異與各自的優勢,爲進一步完善次臨界水層析法的熱力學研究提供了必要的理論基礎。
對氯酚類樣品在次臨界水層析系統中的熱力學行爲加以系統地研究,首次證實在次臨界水層析系統中存在超分子作用----焓熵補償效應。說明可解離溶質在次臨界水體系中的分離滿足同一的機理。這一現象的發現,對於進一步闡明次臨界水體系的分離機制具有重要的意義。
經由系統性地解析可解離溶質在次臨界水分離體系中形態之變化以及不同作用形式的影響,得到了溶質滯留因數與多種平衡之間關係的理論運算式。透過對溶質帶電形態、中性形態與靜相和動相作用的分析,進一步闡明産生焓熵補償的內在依據,也說明了分析物的滯留行爲與pH、鹽類濃度、管柱溫度等條件之間的關係。
根據理論研究結果,本研究亦對五種氯酚類溶質的分離分析條件進行最佳化研究,發展了完備的定性、定量分析方法,研究成果顯示在磷酸鹽濃度5mM、pH=11且溫度於120℃時,五種氯酚類化合物可於8分鐘內完成分離,且具有很好的解析度,偵測極限可達0.024~0.036μg/ml。
The separation of aqueous chlorophenol (CPs) with a self-assembled subcritical water chromatographic system (SWC-HPLC) has been investigated by using the PRX-1column to retain chlorophenols and eluting with subcritical water under the controlled conditions. The detection was set at 230 nm with an UV detector. Factors that affect the chromagraphic behaviors, such as the properties of analytes, the pH and the salt addition in elution solution, the temperature and thr pressure in the column, as well as some thermodynamic characters in the separation have been investigated. Experimental results indicated that the proposed SCW-HPLC-UV attained the best separation for chlorophenols under the optimized condition, i.e. elution at 1.5 ml/min flow rate with subcritical water containing 5mM phosphate buffer at pH 11.0 and at 120℃. Under the optimum conditions, chlorophenols were well resolved within 9min with linear dynamic range of 0.05-1 μg/ml and detection limits were obtained at around 0.024 to 0.036μg/ml levels. The proposed method provided very simple, fast, and solvent-free procedure to analyze CPs.
From the investigation of thermodynamic behaviors of chlorophenols in subcritical water liquid chromatographic system, super-thermodynamic entropy-enthalpy compensation occurs in the system. It depicts the separation of ionized solutes in the subcritical water chromatographic system follows the same mechanism.
謝 誌 I
中 文 摘 要 II
ABSTRACT IV
目 錄 V
圖 次 VIII
表 次 X
符 號 表 XI
第 1 章 緒 論 1
1-1 臨界水特性簡介 2
1-1-1 氫 鍵 3
1-1-2 密 度 3
1-1-3 粘 度 3
1-1-4 熱傳導率 4
1-1-6 溶解度 6
1-1-7 離子積 7
1-2 文獻回顧─次臨界水層析法(SUBCRITICAL WATER CHROMATOGRAPHY,SUBWC) 8
1-2-1次臨界水層析儀器系統 10
1-2-2 次臨界水層析固定相的種類 13
1-2-3 次臨界水層析動相的沖提特徵 15
1-3 焓熵補償效應(ENTHALPY-ENTROPY COMPENSATION,EEC) 18
1-4 層析管柱分離過程的平衡與輸送 22
1-4-1溶質的輸送速率 23
1-4-2 管柱分離過程中的化學平衡 25
1-4-2-1酸鹼平衡 25
1-4-2-2錯合平衡 26
1-4-2-3弱化學作用平衡 26
1-4-2-4管柱分離過程中的物理平衡 27
1-5 研究動機 28
第 2 章 研究方法 30
2-1 實驗藥品、器材、儀器設備 30
2-1-1 藥品 30
2-1-2 器材 31
2-1-3儀器設備 31
2-2 藥品配製 33
2-2-1動相的配製 33
2-2-2儲備溶液的配製 33
2-3 儀器設計及操作條件 35
2-3-1 高效能液相層析儀(HPLC)系統 35
2-3-2 次臨界水層析系統的建構 35
2-3-3 次臨界水層析流體製備 35
2-3-4 高壓幫浦 36
2-3-5 預熱管設計 36
2-3-6 次臨界水層析管柱的選擇 36
2-3-7 冷卻裝置設計 37
2-3-8 限流器設計 37
a.固定式限流器 37
b.可調流速式限流器 38
2-3-9 UV偵測波長的選擇 38
第 3 章 結果與討論 40
3-1可解離溶質於次臨界水層析中的相轉移機制 40
3-1-1 層析靜相的去水合程序(dehydration process) 或去鹽離子副程序 41
3-1-2 可解離溶質的去水合程序(dehydration process) 或去鹽離子副程序 41
3-1-3 可解離溶質與層析靜相的相互作用 42
3-1-4 靜相表面吸附態分析物分子的重新溶劑化作用 43
3-2次臨界水層析法的熱力學特性 43
3-2-1 熱力學參數的研究方法 44
3-2-2 Van’t Hoff方程與熱力學參數計算 47
3-3次臨界水層析中熱力學參數與操作條件之關係研究 54
3-3-1溫度的影響 54
3-3-1-1溫度變化對遷移焓、遷移熵的影響 55
3-3-1-2溫度變化對熱容的影響 55
3-3-1-3溫度變化對自由能的影響 56
3-3-2鹽類的影響 69
3-3-2-1鹽類濃度對遷移焓、遷移熵的影響 69
3-3-2-2鹽類濃度對熱容的影響 69
3-3-2-3鹽類濃度對自由能的影響 70
3-4 SUBWC系統的焓熵補償作用 87
3-5次臨界水逆相層析中可解離溶質的滯留機制 91
3-5-1分析物的解離平衡 91
3-5-2分析物與動相間的作用 91
3-5-3分析物與靜相的作用 92
3-6不同因素對溶質滯留行為的影響 93
3-6-1 pH對分析物滯留值的影響 93
3-6-2 離子強度對分析物滯留行爲的影響 99
3-6-3溫度對滯留因數的影響 104
3-7 五種氯酚類化合物偵測極限的測定與精密度 108
3-7-1分離方法 108
3-7-2 定量分析 110
第 4 章 結論 112
第 5 章 參考文獻 114
1 Hawthorne, Steven B.; Yang, Yu; Miller, David J., Extraction of Organic Pollutants from Environmental Solids with Sub- and Supercritical Water. Analytical Chemistry (1994), 66(18), 2912-2920.
2 Yang, Yu; Belghazi, Maya; Lagadec, Arnaud; Miller, David J.; Hawthorne, Steven B., Elution of organic solutes from different polarity sorbents using subcritical water. Journal of Chromatography, A (1998), 810(1-2), 149-159.
3 Hawthorne, Steven B.; Yang, Yu; Miller, David J., Extraction of Organic Pollutants from Environmental Solids with Sub- and Supercritical Water. Analytical Chemistry (1994), 66(18), 2912-2920.
4 Yang, Yu; Bowadt, Soren; Hawthorne, Steven B.; Miller, David J., Subcritical Water Extraction of Polychlorinated Biphenyls from Soil and Sediment. Analytical Chemistry (1995), 67(24), 4571-4576.
5 Smith, Roger M.; Burgess, Robert J. Superheated water as an eluent for reversed-phase high-performance liquid chromatography., Journal of Chromatography, A (1997), 785(1-2), 49-55.
6 Pawlowski, Tina M.; Poole, Colin F. Solvation characteristics of pressurized hot water and its use in chromatography. Analytical Communications (1999), 36(3), 71-75.
7 Walrafen, G. E.; Yang, W.-H.; Chu, Y. C. Raman Spectra from Saturated Water Vapor to the Supercritical Fluid . Journal of Physical Chemistry B (2001), 105(29), 7155-7156.
8 Antia, Firoz D.; Horvath, Csaba. High-performance liquid chromatography at elevated temperatures: examination of conditions for the rapid separation of large molecules. Journal of Chromatography (1988), 435(1), 1-15.
9 Han, Jung-Ah; Lim, Seung-Taik. Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system. Carbohydrate Polymers (2004), 55(3), 265-272.
10 Silva-Lucca, Rosemeire A.; Tabak, Marcel; Nascimento, Otaciro R.; Roque-Barreira, Maria C.; Beltramini, Leila M. Structural and thermodynamic studies of KM-, a D-mannose binding lectin from Artocarpus integrifolia seeds. Biophysical Chemistry (1999), 79(2), 81-93.
11 Cirilli, R.; Costi, R.; Di Santo, R.; Artico, M.; Roux, A.; Gallinella, B.; Zanitti, L.; La Torre, F. Enantioselective liquid chromatography of C3-chiral 2,3-dihydro-1,2,5-benzothiadiazepin-4(5H)-one and thione 1,1-dioxides on polyacrylamide- and polysaccharide-based chiral stationary phases. Journal of Chromatography, A (2003), 993(1-2), 17-28.
12 Zhou, Lili; Thompson, Richard; Reamer, Robert A.; Miller, Carrie; Welch, Chris; Ellison, Dean K.; Wyvratt, Jean M. Mechanistic study of enantiomeric recognition with native g-cyclodextrin by capillary electrophoresis, reversed-phase liquid chromatography, nuclear magnetic resonance spectroscopy, electrospray mass spectrometry and circular dichroism techniques. Journal of Chromatography, A (2003), 987(1-2), 409-420.
13 Miller, David J.; Hawthorne, Steven B. Subcritical Water Chromatography with Flame Ionization Detection. Analytical Chemistry (1997), 69(4), 623-627.
14 Blackwell, John A.; Stringham, Rodger W.; Weckwerth, Jeff D. Effect of Mobile Phase Additives in Packed-Column Subcritical and Supercritical Fluid Chromatography. Analytical Chemistry (1997), 69(3), 409-415.
15 Smith, Roger M.; Burgess, Robert J. Superheated water as an eluent for reversed-phase high-performance liquid chromatography. Journal of Chromatography, A (1997), 785(1-2), 49-55.
16 Trna M P, Colin F P" Salvation characterristics of pressurized hot water and its use in chromatography", Anal Common, 1999, 38: 71.
17 呂秀陽,何龍,鄭贊勝,蔡磊, 近臨界水中的綠色化工過程,化工進展 (2003) 5,477-481
18 Miller, David J.; Hawthorne, Steven B. Method for Determining the Solubilities of Hydrophobic Organics in Subcritical Water. Analytical Chemistry (1998), 70(8), 1618-1621.
19 Greibrokk Tyge, Andersen Thomas" High-temperature liquid chromatography", J Chromatogr. A, 2003,1000:743-755
20 Yang Yu; Li Bin, "Subcritical Water Extraction Coupled to High-Performance Liquid Chromatography." Anal. Chem., 1999, 71(8): 1491-1495.
21 Yang, Yu; Lamm, Lori J.; He, Ping; Kondo, Toru. Temperature effect on peak width and column efficiency in subcritical water chromatography. Journal of Chromatographic Science (2002), 40(2), 107-112.
22 Yang, Yu; Jones, Aaryn D.; Mathis, John A.; Francis, Melissa A. Flame ionization detection after splitting the water effluent in subcritical water chromatography. Journal of Chromatography, A (2002), 942(1-2), 231-236.
23 Yang, Yu. Separation techniques using subcritical water. Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, April 7-11, 2002 (2002), IEC-277.
24 Kondo, Toru; Yang, Yu; Lamm, Lori. Separation of polar and nonpolar analytes using dimethyl sulfoxide-modified subcritical water. Analytica Chimica Acta (2002), 460(2), 185-191.
25 He, Ping; Yang, Yu. Studies on the long-term thermal stability of stationary phases in subcritical water chromatography. Journal of Chromatography, A (2003), 989(1), 55-63.
26 Lamm, Lori J.; Yang, Yu. Off-line coupling of subcritical water extraction with subcritical water chromatography via a sorbent trap and thermal desorption. Analytical Chemistry (2003), 75(10), 2237-2242.
27 Li, B.; Yang, Y.; Gan, Y.; Eaton, C. D.; He, P.; Jones, A. D. On-line coupling of subcritical water extraction with high-performance liquid chromatography via solid-phase trapping. Journal of Chromatography, A (2000), 873(2), 175-184.
28 Jones, Aaryn; Yang, Yu. Separation of nonpolar analytes using methanol-water mixtures at elevated temperatures. Analytica Chimica Acta (2003), 485(1), 51-55.
29 Yang, Yu; Jones, Aaryn D.; Eaton, Clinton D. Retention behavior of phenols, anilines, and alkylbenzenes in liquid chromatographic separations using subcritical water as the mobile phase. Analytical Chemistry (1999), 71(17), 3808-3813.
30 Kondo, Toru; Yang, Yu. Comparison of elution strength, column efficiency, and peak symmetry in subcritical water chromatography and traditional reversed-phase liquid chromatography. Analytica Chimica Acta (2003), 494(1-2), 157-166.
31 劉光會,色譜分析的新領域─高溫液相色譜, 天然氣化工(2000), 25( 6), 46-52
32 吳仁銘,亞臨界水萃取在分析化學中的應用, 化學進展( 2002) 14( 1),32-36
33 韓海;於榮敏; 王歡;孫平華,亞臨界水作為高效液相色譜流動相及萃取劑的研究概況 ,兒科藥學雜誌, (2003), 9(4), 11-12
34 Renn, Curtiss N.; Synovec, Robert E. Refractive index gradient detection of biopolymers separated by high-temperature liquid chromatography. Journal of Chromatography (1991), 536(1-2), 289-301.
35 Lima, Lawrence R., III; Synovec, Robert E. Uncoupling the effects of convection and diffusion on refractive index gradient detection in high-temperature liquid chromatography. Analytical Chemistry (1993), 65(2), 128-34.
36 Liu, G.; Svenson, L.; Djordjevic, N.; Erni, F. Extra-column band broadening in high-temperature open-tubular liquid chromatography. Journal of Chromatography (1993), 633(1-2), 25-30.
37 Miller, David J.; Hawthorne, Steven B. Subcritical Water Chromatography with Flame Ionization Detection. Analytical Chemistry (1997), 69(4), 623-627.
38 李玲, 陸峰, 孫鵬, 原永芳, 吳玉田,亞臨界水色譜的初步研究, 藥學學報, 2000, 35(11), 832 - 834
39 Feng, L.; Ling, L.; Peng, S.; Yutian, W., Sub-critical Column and Capillary Chromatography with Water as Mobile Phase and Flame Ionization Detection. Journal of Chinese Pharmaceutical Sciences 2001, 10 (1), 39-41.
40 Ingelse, Benno A.; Janssen, Hans-Gerd; Cramers, Carel A. HPLC-FID with superheated water as the eluent. Improved methods and instrumentation. Journal of High Resolution Chromatography (1998), 21(11), 613-616.
41 Smith, Roger M.; Burgess, Robert J. Superheated water - a clean eluent for reversed-phase high-performance liquid chromatography. Analytical Communications (1996), 33(9), 327-329.
42 Smith, Roger M.; Burgess, Robert J. Superheated water as an eluent for reversed-phase high-performance liquid chromatography. Journal of Chromatography, A (1997), 785(1-2), 49-55.
43 Zhao, Jianhong; Carr, Peter W. A comparative study of the chromatographic selectivity of polystyrene-coated zirconia and related reversed-phase materials. Analytical Chemistry (2000), 72(2), 302-309.
44 Kephart, T. S.; Dasgupta, P. K. Hot eluent capillary liquid chromatography using zirconia and titania based stationary phases. Analytica Chimica Acta (2000), 414(1-2), 71-78.
45 Bruckner, Carsten A.; Ecker, Scott T.; Synovec, Robert E. Simultaneous Flame Ionization and Absorbance Detection of Volatile and Nonvolatile Compounds by Reversed Phase Liquid Chromatography with a Water Mobile Phase. Analytical Chemistry (1997), 69(17), 3465-3470.
46 Cooper, Alan; Johnson, Christopher M.; Lakey, Jeremy H.; Nollmann, Marcelo. Heat does not come in different colours: entropy-enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophysical Chemistry (2001), 93(2-3), 215-230.
47 Elcock, Adrian H.; McCammon, J. Andrew. Calculation of weak protein-protein interactions: the pH dependence of the second virial coefficient. Biophysical Journal (2001), 80(2), 613-625.
48 Vailaya, A. and Horváth, C., "Retention thermodynamics in hydrophobic interaction chromatography", Ind. Eng. Chem. Res. 35 (1996) 2964.
49 Vailaya, Anant; Horvath, Csaba. Retention Thermodynamics in Hydrophobic Interaction Chromatography. Industrial & Engineering Chemistry Research (1996), 35(9), 2964-2981.
50 Vailaya, Anant; Horvath, Csaba. Enthalpy-Entropy Compensation in Hydrophobic Interaction Chromatography. Journal of Physical Chemistry (1996), 100(6), 2447-2455.
51 Liu, L.; Yang, C.; Guo, Q.-X. A study on the enthalpy-entropy compensation in protein unfolding. Biophysical Chemistry (2000), 84(3), 239-251.
52 Chen, Li-Jen; Lin, Shi-Yow; Huang, Chiung-Chang. Effect of Hydrophobic Chain Length of Surfactants on Enthalpy-Entropy Compensation of Micellization. Journal of Physical Chemistry B (1998), 102(22), 4350-4356.
53 Boysen R. I.; Wang Y.; Keah H. H.; Hearn M. T. Observations on the origin of the non-linear van''t Hoff behaviour of polypeptides in hydrophobic environments. Biophysical chemistry (1999), 77(2-3), 79-97.
54 Chen, Li-Jen; Lin, Shi-Yow; Huang, Chiung-Chang. Effect of Hydrophobic Chain Length of Surfactants on Enthalpy-Entropy Compensation of Micellization. Journal of Physical Chemistry B (1998), 102(22), 4350-4356.
55 Baldwin, Robert L. Temperature dependence of the hydrophobic interaction in protein folding. Proceedings of the National Academy of Sciences of the United States of America (1986), 83(21), 8069-8072.
56 Privalov, P. L.; Gill, Stanley J. Stability of protein structure and hydrophobic interaction. Advances in Protein Chemistry (1988), 39 ,191-234.
57 Murphy, Kenneth P.; Privalov, P. L.; Gill, Stanley J. Common features of protein unfolding and dissolution of hydrophobic compounds. Science (Washington, DC, United States) (1990), 247(4942), 559-561.
58 Ranatunga, Ravi; Vitha, Mark F.; Carr, Peter W. Mechanistic implications of the equality of compensation temperatures in chromatography. Journal of Chromatography, A (2002), 946(1-2), 47-49.
59 Welzel, Petra B. Investigation of adsorption-induced structural changes of proteins at solid/liquid interfaces by differential scanning calorimetry. Thermochimica Acta (2002), 382(1-2), 175-188.
60 Pahlman, Sven; Rosengren, Jan; Hjerten, Stellan. Hydrophobic interaction chromatography on uncharged Sepharose derivatives. Effects of neutral salts on the adsorption of proteins. Journal of Chromatography (1977) 131 ,99-108.
61 Ma, J.C. and Dougherty, D.A. The Cationminus signpi Interaction. Chem.Rev. 97 (1997) 1303-1324
62 Hearn, Milton T. W.; Zhao, Guoling. Investigations into the thermodynamics of polypeptide interaction with nonpolar ligands. Analytical Chemistry (1999), 71(21), 4874-4885.
63 Goheen, Steven C.; Engelhorn, Sheldon C. Hydrophobic interaction high-performance liquid chromatography of proteins. Journal of Chromatography (1984), 317 55-65.
64 Ingraham, Richard H.; Lau, Stephen Y. M.; Taneja, Ashok K.; Hodges, Robert S. Denaturation and the effects of temperature on hydrophobic-interaction and reversed-phase high-performance liquid chromatography of proteins. Bio-Gel TSK-Phenyl-5-PW column. Journal of Chromatography (1985), 327 ,77-92.
65 Hunter, Christopher A.; Lawson, Kevin R.; Perkins, Julie; Urch, Christopher J. Aromatic interactions. Journal of the Chemical Society, Perkin Transactions 2 (2001), (5), 651-669
66 Van Regenmortel, M. H. V.; Altschuh, D.. Principles of antigen-antibody recognition. Biomolecular Sensors (2002), 3-18.
67 Ha, Jeung Hoi; Capp, Michael W.; Hohenwalter, Mark D.; Baskerville, Mark; Record, M. Thomas, Jr. Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to DNA. Possible thermodynamic origins of the "glutamate effect" on protein-DNA interactions. Journal of Molecular Biology (1992), 228(1), 252-64.
68 Matsushima, Ayami; Fujita, Tsugumi; Nose, Takeru; Shimohigashi, Yasuyuki. Edge-to-face CH/π interaction between ligand Phe-phenyl and receptor aromatic group in the thrombin receptor activation. Journal of Biochemistry (Tokyo) (2000), 128(2), 225-232.
69 Janshoff, Andreas; Steinem, Claudia; Sieber, Manfred; el Baya, A.; Schmidt, Marcus Alexander; Galla, H.-J. Quartz crystal microbalance investigation of the interaction of bacterial toxins with ganglioside containing solid supported membranes. European Biophysics Journal (1997), 26(3), 261-270.
70 Tsai, Yi-Shiun; Lin, Fu-Yung; Chen, Wen-Yih; Lin, Chien-Cheng. Isothermal titration microcalorimetric studies of the effect of salt concentrations in the interaction between proteins and hydrophobic adsorbents. Colloids and Surfaces, A: Physicochemical and Engineering Aspects (2002), 197(1-3), 111-118.
71 Pahlman, Sven; Rosengren, Jan; Hjerten, Stellan. Hydrophobic interaction chromatography on uncharged Sepharose derivatives. Effects of neutral salts on the adsorption of proteins. Journal of Chromatography (1977), 131, 99-108.
72 Arakawa, Tsutomu; Timasheff, Serge N. Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry (1984), 23(25), 5912-23.
73 Sanz, Yolanda; Mulholland, Francis; Toldra, Fidel. Purification and characterization of a tripeptidase from Lactobacillus sake. Journal of Agricultural and Food Chemistry (1998), 46(1), 349-353.
74 Haidacher, Dietmar; Vailaya, Anant; Horvath, Csaba. Temperature effects in hydrophobic interaction chromatography. Proceedings of the National Academy of Sciences of the United States of America (1996), 93(6), 2290-5.
75 Raffa, Robert B. (Extra) thermodynamics of the drug-receptor interaction. Life Sciences (1999), 65(10), 967-980.
76 王志; 孫亦梁; 孫曾培, 高效毛細管電泳分離手性物質,分析測試學報 (1996)15(2),85-92
77 Rawjee, Yasir Yusufali. Cyclodextrin-mediated chiral separations via capillary zone electrophoresis. (1993), 206 pp. CAN 121:43752 AN 1994:443752
78 關福玉,高效毛細管電泳分離中的化學平衡, 分析化學 (1996) 24(1),109-114
79 Yang, Yu. Stationary phases for high-temperature liquid chromatography. LC-GC Europe (2003), 16(6a), 37-41.
80 張麗莉;陳麗;趙雪峰;於茂琳;田宜靈, 超臨界水的特性及應用, 化學工業與工程, (2003), 20(1), 33-39
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top