跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 23:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡叔芬
研究生(外文):Shu-Fen Tsai
論文名稱:臺農25、臺農64與臺農66品種甘藷玻璃化法超低溫冷凍保存前處理流程之探討
論文名稱(外文):Investigation of pretreatments protocol on the cryopreservation of sweet potato (Impomoea batatas(L.)Lam.) treated by vitrification
指導教授:廖松淵
指導教授(外文):Song-Iuan Liaw
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:超低溫冷凍保存玻璃化法預培養滲透逆境共同運輸蛋白
外文關鍵詞:cryopreservationvitrificationprecultureosmotic stresscotransporter
相關次數:
  • 被引用被引用:10
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
摘要
甘藷(Ipomoea batatas (L.) Lam.)為熱帶作物,在冷馴化期間對低溫敏感且對PVS2之脫水忍受度低,故較不易利用玻璃化法進行冷凍保存。為達到成功的超低溫冷凍保存,以高濃度蔗糖(0.3-1.0M)進行預培養3天,針對不同甘藷品種,選擇較佳的滲透逆境,並誘導甘藷莖頂產生對PVS2滲透與冷凍之忍受能力。
臺農25號、臺農64號及臺農66號甘藷經不同高濃度蔗糖預培養3天,以LS處理60分鐘,PVS2冷凍保護劑脫水75分鐘,進行超低溫冷凍保存。臺農25號經0.8M高濃度蔗糖可達50%之存活率;臺農64號經0.5M高濃度蔗糖可達76.6%之存活率;臺農66號經0.4M高濃度蔗糖可達86.6%之存活率。
以不同的高濃度蔗糖預培養3天之莖頂,進行相對含水量、滲透潛勢、可溶性醣類與可溶性蛋白質含量之測定。發現三供試品種皆因蔗糖濃度處理而增高可溶性醣類含量,進而影響滲透潛勢變化。尤其臺農25號必須在較高濃度蔗糖(0.6-0.8M)時,可溶性醣類含量才明顯增高,滲透潛勢亦大幅下降。三供試品種經高濃度蔗糖之滲透逆境處理,也造成可溶性蛋白質含量增加,以SDS-PAGE電泳分析,發現分子量26.2kDa、25.3kDa及23.8kDa之蛋白質明顯增加,尤以分子量26.2kDa蛋白質累積最明顯。進一步進行蛋白質N端定序,並進行相似性蛋白質產物比對分析,得知此蛋白質為cation-chloride cotransporter。
本實驗以不同濃度蔗糖進行前處理,讓材料處於適當的滲透逆境,誘導cation-chloride cotransporter大量累積,推測此離子運輸蛋白選擇性地運輸離子並維持生理狀態所需之離子濃度,使組織能在逆境下存活。因此玻璃化法冷凍保存流程之前處理中,以高濃度蔗糖預培養與適當時間之冷凍保護劑處理,為甘藷超低溫冷凍保存成功關鍵之兩步驟。
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is a tropical plant which it has sensitivity to low temperature during cold-hardening and it has low tolerance to dehydration with PVS2. Cryopreservation of sweet potato using vitrification has been shown difficult. For successful cryopreservation by vitrification of this plant, we have precultured for 3 days on different high concentrations sucrose (0.3-1.0M) media and investigated suitable osmotic stress induced the osmotolerance to PVS2 solution and tolerance to subsequent freezing by different species of sweet potato.
The shoot tips from in vitro-grown plantlets of sweet potato TN25, TN64 and TN66 (Ipomoea batatas (L.) Lam. cv. Tainung No. 25, 64 and 66) were precultured for 3 days on hormone-free 1/2MS medium containing different sucrose concentrations. The precultured shoot tips were treated with a loading solution (LS) for 60 minutes and then dehydrated with a vitrification solution (PVS2) for 75 minutes, and following cryopreservation. The best survival rates of 50%, 76.6% and 86.6% were obtained when shoot tips were precultured on 0.8M, 0.5M and 0.4M sucrose for sweet potato TN25, TN64 and TN66, respectively.
After preculturing three species of sweet potato shoot tips on different sucrose concentrations for 3 days, we analyzed the hydric and biochemical modification. The results indicated that sucrose concentration affected the accumulation of soluble sugar, and indirect affected osmotic potential change. Especially in sweet potato TN25 that the soluble sugar content and osmotic potential were significantly increased when were precultuered on 0.6-0.8M sucrose. We obtained that proteins content increase in the different high sucrose concentrations, and accumulation of the 26.2kDa, 25.3 kDa and 23.8 kDa protein increased as detected by SDS-PAGE protein analysis, especially the 26.2 kDa protein was significantly accumulated. The N-terminal amino acid sequence of the 26.2 kDa protein was determined and exhibited 83% homology to the cation-chloride cotransporter.
This study pretreatment samples on the optimal high concentration sucrose which showed increase the cation-chloride cotransporter accumulated was induced by osmotic stress. Ion transporters selectively transport ions and maintain them at physiologically relevant concentrations, permitting plant survival and growth under osmotic stress. Thus preculture with high concentration sucrose and pretreatment with cryoprotectant time were achieved through investigating two key steps of the vitrification protocol.
目錄
目錄………………………………………………………………………Ⅰ
表目錄……………………………………………………………………Ⅱ
圖目錄……………………………………………………………………Ⅲ
縮寫表……………………………………………………………………Ⅴ
摘要………………………………………………………………………1
Abstract…………………………………………………………………2
一、前言…………………………………………………………………4
二、前人研究……………………………………………………………7
三、材料與方法…………………………………………………………11
四、結果…………………………………………………………………22
五、討論…………………………………………………………………49
六、結論…………………………………………………………………61
七、參考文獻……………………………………………………………62
附錄………………………………………………………………………69
參考文獻
李良。1963。甘藷。臺灣雜糧作物品種圖說。臺灣省政府農林廳。pp.1-47
李良。1994。雜糧作物各論。第17章,甘藷。財團法人臺灣區雜糧發展基金會。pp.1327-1477
李良。1995。甘藷。臺灣農家要覽農作篇(一)。財團法人豐年社。pp.47-56
林怡君。2002。臺農57、臺農68品種甘藷超低溫冷凍保存前處理流程之探討。國立中興大學植物學研究所碩士論文
首頁。http://www.mdais.gov.tw/
張銘文。2002/04/15。食用甘藷栽培技術。苗栗區農業改良場全球資訊網首頁。http://www.mdais.gov.tw/
陳建山。1995。甘藷產業新展望。鄉間小路21(4):7-8
楊忠祐。2002。臺農69號品種甘藷之超低溫冷凍保存研究。國立中興大學植物學研究所碩士論文
廖嘉信。1995。塊根甘藷。鄉間小路21(4):12-13
劉邱麗。1996。低溫處理對番木瓜葉片之生理影響。國立中興大學植物學研究所碩士論文
蔡淑華。1995。染色與染料。植物組織切片技術綱要。pp.47-58
鄭書杏。2002/04/15。葉用甘藷栽培與利用。苗栗區農業改良場全球資訊網
Bortner CD, Hughes FMJ, Cidlowski JA (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis. J biol Chem 272:32436-32442
Bradford M (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248-254
Bryant G, Koster KL, Wolfe J (2001) Membrane behaviour in seeds and other systems at low water content: the various effects of solutes. Seed Science Research 11:17-25
Buchheim J, Colbum SM, Ranch JP (1989) Maturation of soybean somatic embryos on the transition to plantlet growth. Plant Physiol 89:768-775
Charoensub R, Phansiri S, Sakai A, Yongmenitchai W (1999) Cryopreservation of cassava in vitro-grown shoot tips cooled to -196℃ by vitrification. Cryo-Letters 20:89-94
Chrispeels MJ, Crawford NM, Schroeder JI (1999) Proteins for transport of water and mineral nutrients across the membranes of plant cells. Plant Cell 11:661-675
Chu C, Dai Z, Maurice SB, Edward GE (1990) Induction of crassulacean acid metabolism in the facultative halophyte Mesembryanthemum Crystallium by abscisic acid. Plant Physiol 93:1253-1260
Chun JU, Yu XM, Griffith M (1998) Genetic studies of antifreeze proteins and their correlation with winter survival in wheat. Euphytica 102:219-226
Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1-10
Dumet D, Engelmann F, Chabrillange N, Duval Y, Dereuddre J (1993) Importance of sucrose for the acquisition of tolerance to desiccation and cryopreseration of oil palm somatic embryos. Cryo-Letters 14:243-250
Engelmann F (1997) In vitro conservation methods. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources. CAB International, Oxon, pp 119-161
Englemann F (1991) In vitro conservation of tropical plant germplasm-a review. Euphytica 57:227-243
Fahy GM (1986) The relevance of cryoprotectant ‘toxicity’ to cryobiology. Cryobiology 23:1-13
Grospietsch M, Stodulková E, Zamêcnik J (1999) Effect of osmotic stress on the dehydration tolerance and cryopreservation of Solanum tuberosum shoot tips. Cryo-Letters 20:339-346
Harling H, Czaja I, Schell J, Walden R (1997) A plant cation-chloride co-transporter promoting auxin-independent tobacco protoplast division. EMBO J 16:5855-5866
Helliot B, Panis B, Poumay Y, Swennen R, Lepoivre P, Frison E (2002) Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Rep 20:1117-1122
Helliot B, Swennen R, Poumay Y, Frison E, Lepoivre P, Panis B (2003) Ultrastructural changes associated with cryopreservation of banana (Musa spp.) highly proliferating meristems. Plant Cell Rep 21:690-698
Hirai D, Sakai A (1999) Cryopreservation of in vitro-grown axillary shoot tip meristems of mint (Mentha spicata L.) by encapsulation vitrification. Plant Cell Rep 19:150-155
Hirai D, Sakai A (2003) Simplified cryopreservation of sweet potato [Ipomoea batatas (L.) Lam.] by optimizing conditions for osmoprotection. Plant Cell Rep 21:961-966
Hitmi A, Barthomeuf C, Sallanon H (1999) Cryopreservation of Chrysanthemum cinerariaefolium shoot tips. Effects of pretreatment conditions and retention of biosynthetic capacity. Cryo-Letters 20:109-120
Jensen WA (1962) Botanical histochemistry W.H. Freeman and Company, San Francisco London. pp.55-99
Koster KL (1991) Glass formation and desiccation tolerance in seeds. Plant Physiol 96:302-304
Koster KL, Lei YP, Anderson M, Martin S, Bryant G (2000) Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. Biophysical J 78:1932-1946
Lambardi M, Fabbri A, Caccavale A (2000) Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Rep 19:213-218
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680-685
LeGendre N, Matsudaira P (1988) Direct protein microsequencing from ImmobilonTM_P transfer membrane. Bio Technique 6:154-159
Leunufna S, Keller ERJ (2003) Investigating a new cryopreservation protocol for yams (Dioscorea spp.). Plant Cell Rep 21:1159-1166
Lin C, Guo W, Everson E, Thomashow MF (1990) Cold acclimatation in Arabidopsis and wheat. A response associated with expression of related genes encoding ‘boiling-stable’ polypeptides. Plant Physiol 94:1078-1083
Liu H, Yu W, Dai J, Gong Q, Yang K, Lu X (2004) Cryopreservation of protoplasts of the alga Porphyra yezoensis by vitrification. Plant Sci 166:97-102
Marentes E, Griffith M, Mlynarz A, Brush RA (1993) Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiologia Plantarum 87:499-507
Matsumoto T, Sakai A, Nako Y (1998) A novel preculturing for enhancing the survival of in vitro-grown meristems of wasabi (Wasabia japonica) cooled to -196℃ by vitrification. Cryo-Letters 19:27-36
Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabi japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442-446
Matsumoto T, Sakai A, Yamada K (1995) Cryopreservation of in vitro-grown apical meristems of lily by vitrification. Plant Cell Tiss Org Cult 41:237-241
Mount DB, Delpire E, Gamba G, Hall A Poch E, Hoover RS, Hebert S (1998) The electroneutral cation-chloride cotransporters. J exp Biol 201:2091-2102
Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875-879
Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1992) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic cells and subsequent plant regeneration by a simple freezing method. Cryo-Letters 13:379-388
Palva ET, Htiharju ST, Tamminen I, Puhakainen T, Laitinen R, Svensson J, Helenius E, Heino P (2002) Biological mechanisms of low temperature stress response: Cold acclimation and development of freezing tolerance in plants. JIRCAS Working Rep: 9-15
Panis B, Totte N, Nimmen KV, Withers LA, Swennwn R (1996) Cryopreservation of banana (Musa spp.) meristem cultures after preculture on sucrose. Plant Sci 121:95-106
Paul H, Daigny G, Sangwan-Norreel BS (2000) Cryopreservation of apple (Malus×domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19:768-774
Pearce RS (2001) Plant freezing and damage. Annals of Botany 87:417-424
Pennycooke JC, Towill LE (2000) Cryopreservation of shoot tips from in vitro plants of sweet potato [Ipomoea batatas (L.) Lam.] by vitrification. Plant Cell Rep 19:733-737
Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30-33
Steponkus PL, Webb MS (1992) Freeze-induced dehydration and membrane destabilization in plants. In G Somero, B Osmond, eds, Water and Life: Comparative Analysis of Water Relationships at the Organismic, Cellular and Molecular Level. Springer Verlag, Berlin, pp 338-362
Takagi H, Thinh NT, Islam OM, Senboku T, Sakai A (1997) Cryopreservation of in vitro-grown shoot tips of taro(Colocasia esculenta (L.) Schott) by vitrification. 1. Investigation of basic conditions of the vitrification procedure. Plant Cell Rep 16:594-599
Thierry C, Florin B, Pétiard V (1999) Changes in protein metabolism during the acquisition of tolerance to cryopreservation of carrot somatic embryos. Plant Physiol Biochem 37:145-154
Thierry C, Tessereau H, Florin B, Meschine M-C, Pétiard V (1997) Role of sucrose for the acquisition of tolerance to cryopreservation of carrot somatic embryos. Cryo-Letters 18:283-292
Thinh NT, Takagi H, Yashima S (1999) Cryopreservation of in vitro-grown shoot tips of banana (Musa spp.) by vitrification method. Cryo-Letters 20:163-174
Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1-7
Touchell DH, Chiang VL, Tsai C-J (2002) Cryopreservation of embryogenic culture of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118-124
Towill LE, Jarret RL (1992) Cryopreservation of sweet potato [Ipomoea batatas (L.) Lam.] shoot tips by vitrification. Plant Cell Rep 11:175-178
Turner SR, Senaratna T, Touchell DH, Bunn E, Dixon KW, Tan B (2001a) Stereochemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation. Plant Sci 160:489-497
Turner SR, Senaratna T, Bunn E, Tan B, Dixon KW, Touchell DH (2001b) Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Ann Bot 87:371-378
Uragami A, Sakai A, Nagai M (1990) Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep 9:328-331
Wang JH (2000a) A comprehensive of the effects and mechanisms of antifreeze proteins during low-temperature preservation. Cryobiology 41:1-9
Wang Q, Gafny R, Sahar N, Sela I, Mawassi M, Tanne E, Perl A (2002a) Cryopreservation of grapevine (Vitis vinifera L.) embryogenic cell suspensions by encapsulation-dehydration and subsequent plant regeneration. Plant Sci 162:551-558
Wang Q, Tanne E, Arav A, Gafny R (2000b) Cryopreservation of in vitro-grown shoot tips of grapevine by encapsulation-dehydration. Plant Cell Tiss Org Cult 63:41-46
Wang Q, Batuman Ö, Li P, Bar-Joseph M, Gafny R (2002b) Cryopreservation of in vitro-grown shoot tips of ‘Troyer’ citrange [poncirus trifoliate(L.) Raf.× Citrus sinensis (L.) Osbeck.] by encapsulation-dehydration. Plant Cell Rep 20:901-906
Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14
Wowk B, Leitl E, Rasch CM, Mesbah-karimi N, Harris SB, Fahy GM (2000) Vitrification enhancement by synthetic ice blocking agents. Cryobiology 40:228-236
Yamada T, Sakai A, Matsumura T, Higuchi S (1991) Cryopreservation of apical meristems of white clover (Trifolium repens L.) by vitrification. Plant Sci 78:81-87
Yoshida S, Forno JH, Cook H, Gornez KA (1976) Determination of chlorophyll in plant tissue. Laboratory mannal of physiological studies for ice. IRRI 26:43-49
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top