(3.230.76.48) 您好!臺灣時間:2021/04/12 16:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施靜芳
研究生(外文):Ching-Fang Shih
論文名稱:植物中調節分生組織活性之NAC-like基因及與開花、老化相關之GIGANTEA(GI)同源基因之功能分析及應用
論文名稱(外文):Functional analysis and the application of NAC-like genes and GIGANTEA(GI) orthologues in regulating meristematic activity, flowering and senescence in plants
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:分生組織老化
外文關鍵詞:meristemNAC-like geneGIGANTEAsenescence
相關次數:
  • 被引用被引用:5
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
NAC-like基因是在其蛋白質N端帶有約150個氨基酸之NAC domain的基因群,其被認為參與調控多種植物的發育過程。本研究在分析探討三個阿拉伯芥之NAC-like基因,AtNACL1,AtNACL2及NAC2。在mRNA的表現方面,此三個基因皆可在花序分生組織、花苞及葉片中偵測到基因的表現,但在根部,AtNACL1及NAC2基因有表現,而AtNACL2則沒有表現。另外在分析AtNACL1與AtNACL2 T-DNA插入(insertional)或反股(antisense)突變株中發現,其葉、芽莖、花及根之生長皆發生嚴重變異,植株出現異常葉,多花序之叢生狀芽莖及叢生狀之根的性狀。進一步分析此兩基因突變之植株,發現造成這些突變之性狀與一些已知參與分生組織發育相關基因,如:SERRATE、FASCIATA、WUS、DBP及與細胞分裂素(cytokinin)調節相關基因KNAT1 , STM等之異常表現有關。本研究結果不只顯示AtNACL1及AtNACL2具有調控頂芽及根分生組織的活性,並且提供了新的訊息以幫助了解NAC-like基因在植物發育中扮演的功能。為了進一步探討與此兩基因產物相互作用之蛋白質,本研究亦同時進行yeast-two hybrid之實驗,以利後續分析之工作。前人研究指出,將阿拉伯芥中的GIGANTEA(GI)基因突變後會出現開花及老化延遲之現象。本研究由青花菜(Brassica oleracea)中選殖出一個GI 之同源基因,BoGI。BoGI mRNA在發育過程中,可在葉片、芽、根及花苞處偵測到表現。進一步分析發現,BoGI之表現受生理時鐘所調節,在光照後8-12小時表現最高,而在清晨時最低。為了藉由BoGI/GI基因來研究其參與之老化-開花機制的調節,及其在農業上的應用如控制青花菜的開花時間及花苞老化的現象,本研究構築了一些構築體包括以35S promoter及一個與花器專一性表現的AP1 promoter來大量表現GI/BoGI 之antisense cDNA,並將這些構築體轉殖至阿拉伯芥及青花菜中,並已成功得到轉殖植株。進一步分析這些轉殖株綠色期延長情況之結果應可幫助增加青花菜市場上的價值與農民實質上的利益。
NAC-like genes that contained a conserved 150 amino acid NAC domain at their N-terminus of proteins have been considered to be involved in the regulation of many processes of plant development. AtNACL1, AtNACL2 and NAC2 with conserved NAC domain were identified in Arabidopsis. AtNACL1, AtNACL2 and NAC2 mRNA were detected in the inflorescence meristem, floral buds, and leaves. AtNACL1 and NAC2 mRNA is also expressed in roots where AtNACL2 expression is absent. Shoot, leaf, flower and root formation was severely altered in T-DNA insertional or antisense mutants of AtNACL1 and AtNACL2 by producing serrated leaves, generating a bushy phenotype with numerous inflorescences and branches of roots. Further analysis indicated that the mutant phenotypes were correlated with the alteration of the expression for genes involved in meristematic development such as FASCIATA, SERRATE, WUS, DBP and cytokinin regulating pathway such as KNAT1 , STM in mutants of AtNACL1 and AtNACL2. These results provided new insight of the function for NAC-like genes in plants. To investigate the interacting proteins for AtNACL1, 2, yeast two-hybrid assay is in progress. Mutation in GIGANTEA (GI) caused delay of flowering and senescence in Arabidopsis. BoGI, a GI orthologue was isolated and characterized from Brassica oleracea. BoGI mRNA is expressed throughout development and can be detected in leaves, shoot, root and flowers. Further analysis indicated that the expression of BoGI is modulated by the circadian clock. To investigate the senescence-flowering associated mechanism regulated by BoGI/GI genes and the agricultural application of BoGI/GI in controlling flowering time and floret yellowing for B. oleracea, constructs contained antisense cDNA of GI/BoGI driven by 35S or a flower specific AP1 promoter were transformed into Arabidopsis and B. oleracea and the transgenic plants were generated. Further confirm of the elongation of the green period in the transgenic plants should increase the market value and directly benefit to the farmers.
總摘要(中文)------------------------------------------------------------------------5
總摘要(英文)------------------------------------------------------------------------6
第一章 植物中調節分生組織活性之NAC-like基因的功能性分析
摘要 --------------------------------------------------------------------------------8
壹、前言---------------------------------------------------------------------------- 9
貳、材料與方法------------------------------------------------------------------- 23
参、結果---------------------------------------------------------------------------- 43
一、阿拉伯芥中AtNACL1、AtNACL2及NAC2基因之鑑別與選殖------- 43
二、阿拉伯芥中AtNACL1、AtNACL2及NAC2 之cDNA選殖------------ 44
三、AtNACL1、AtNACL2及NAC2於阿拉伯芥野生型表現量的偵測------45
四、AtNACL1、AtNACL2及NAC2轉殖入阿拉伯芥植物--------------------46
五、AtNACL1、AtNACL2 T-DNA突變株之鑑定------------------------------48
六、35S::AtNACL1 sense及antisense / T-DNA轉基因植物性狀分析-------49
七、AtNACL2 T-DNA突變植株之性狀分析-----------------------------------52
八、AtNACL2 T-DNA突變株後期發育花之變異性狀分析------------------55
九、AtNACL2 T-DNA突變株異常花之基因檢測-----------------------------56
十、AtNACL2 T-DNA突變株之多子葉及光型態測試-----------------------58
十一、AtNACL1及AtNACL2 T-DNA突變植株中一些與分生組織
發育相關基因表現量之分析-----------------------------------------------62
十二、AtNACL1及AtNACL2之酵母雙雜合(yeast two-hybrid)分析--------64
肆、討論---------------------------------------------------------------------------- 68
伍、參考文獻---------------------------------------------------------------------- 77
陸、圖表---------------------------------------------------------------------------- 86
第二章 青花菜中與開花、老化相關之GIGANTEA(GI)同源基因的功能
分析及應用
摘要 --------------------------------------------------------------------------------- 134
壹、前言---------------------------------------------------------------------------- 135
貳、材料與方法------------------------------------------------------------------- 145
参、結果---------------------------------------------------------------------------- 151
一、青花菜中GIGANTEA(GI)同源基因BoGI之選殖-------------------- 151
二、青花菜中BoGI基因表現量之偵測------------------------------------- 153
三、BoGI基因光週期之表現量偵測---------------------------------------- 153
四、35S::antiBoGI及AP1::antiBGI構築體之構築------------------------- 154
五、35S::antiBoGI及AP1::antiBGI構築體轉殖入阿拉伯芥植物-------- 157
六、35S::antiAtGI、35S::antiBoGI及AP1::antiBGI構築體轉殖入
青花菜----------------------------------------------------------------------- 157
七、轉殖35S::antiAtGI青花菜之性狀分析--------------------------------- 158
八、35S::antiAtGI構築體轉殖青花菜之基因偵測------------------------- 158
肆、討論---------------------------------------------------------------------------- 161
伍、參考文獻---------------------------------------------------------------------- 167
陸、圖表---------------------------------------------------------------------------- 174
Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M. (1997).
Genes Involved in Organ Separation in Arabidopsis: An Analysis of the cup-shaped cotyledon Mutant. Plant Cell 9: 841-857.
Aida, M., Ishida, T. and Tasaka, M. (1999). Shoot apical meristem and
cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and
SHOOT MERISTEMLESS genes. Development 126: 1563-1570.
Aida, M., Vernoux, T., Furutani, M., Traas, J. and Tasaka, M. (2002).
Roles of PINFORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129: 3965-3974.
Baurle, I. and Laux, T. (2003). Apical meristem: the plant’s fountain of
youth. BioEssays 25: 961-970.
Bechtold, N. and Pelletier, G. (1998). In planta Agrobacterium-mediated
transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82: 259-266.
Birnboim, H.C. and Doly, J. (1979). A rapid alkaline extraction procedure
for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523.
Birnboim, H.C. (1983). A rapid alkaline extraction method for the
isolation of plasmid DNA. Methods Enzymol. 100: 243-255.
Benfey, P.N. and Schiefelbein, J.W. (1994). Getting to the root of plant
development: The genetic of Arabidopsis root formation. Trends Genet. 10: 84-88.
Borton, M.K. and Poethig, R.S. (1993). Formation of shoot apical
meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823-831.
Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M. and Simon, R.
(2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617-619.
Byrne, M.E., Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson,
and Martienssen, R.A. (2000). Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408: 967-971.
Byrne, M.E., Simorowski, J. and Martienssen, R.A. (2002).
ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 129: 1957-1965.
Catterou, M., Dubois, F., Smets, R., Vaniet, S., Kichey, T., Onckelen,
H.V., Sangwan-Norreel, B.S. and Sangwan, R.S. (2002). hoc: an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J. 30: 273—287.
Chaudhury, A.M., Letham, S., Craig, S. and Dennis, E.S. (1993). amp1-
A mutant with high cytokinin levels and altered embyonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J. 4: 907-916.
Cheng, J., Seeley K.A. and Sung, Z.R. (1995). RML1 and RML2,
Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol. 107: 365-376.
Chin-Atkins, A.N., Craig, S., Hocart, C.H., Dennis, E.S. and Chaudhury,
A.M. (1996). Increased endogenous cytokinin in the Arabidopsis amp1 mutant corresponds with de-etiolation responses. Planta 198: 549-556.
Chou, L-T. (2002). Molecular cloning and functional analysis of
NAC-like genes from various plant species. M.S. thesis, National Chung Hsing University, Taiwan.
Chuck, C., Lincoln., C. and Hake, S. (1996). KNAT1 induces lobed leaves
with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8: 1277-1289.
Clark, S.E., Running, M.P. and Meyerowitz, E.M. (1995). CLAVATA3 is a
specific regulator of shoot meristem development affecting the same processes as CLAVATA1. Development 121: 2057-2067.
Clarke, J.H., Tack, D., Findlay, K., Van Montagu, M. and Van
Lijsebettens, M. (1999). The SERRATE locus controls the formation of the early juvenile leaves and phase length in Arabidopsis. Plant J. 20: 493—501.
Coen, E.S. and Meyerowitz EM (1991) The war of the whorls: genetic
interactions controlling flower development. Nature 353: 31-37.
Collinge, M. and Boller, T. (2001). Differential induction of two potato
genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46: 521-529
Daimon, Y., (2003). The CUP-SHAPED COTYLEDON genes promote
adventitious shoot formation on calli. Plant Cell Physiol. 44: 113-121.
Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts,
K and Scheres, B. (1993). Cellular organization of the Arabidopsis thaliana root. Development 119: 71-84.
Duval, M., Hsieh, T-F., Kim, S.Y. and Thomas, T.L. (2002). Molecular
characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50: 237-248.
Endrizzi, K., Moussian, B., Haecker, A., Levin, J.Z. and Laux, T. (1996).
The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 10: 967-979.
Ernst, H.A., Olsen, A.N., Skriver, K., Larsen, S. and Leggio, L.L. (2004).
Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO reports 5: 1-7.
Estruch JJ, Granell A, Hansen G, Prinsen E, Redig P, Van Onckelen H,
Schwarz-Sommer Z, Sommer H, Spena A. (1993). Floral development and expression of floral homeotic genes are influenced by cytokinins. Plant J. 4: 379—384.
Faiss, M., Zalubilova, J., Strnad, M. and Schmu È lling, T. (1997).
Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J. 12: 401-415.
Fletcher, J.C., Brand, U., Running, M.P., Simon, R. and Meyerowitz,
E.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283: 1911-1914.
Gallois, J.L., Woodward, C., Reddy, G.V. and Sablowski, R. (2002).
Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129: 3207-3217.
Greve, K., La Cour, T., Jensen, M.K., Poulsen, F.M. and Skriver, K.
(2003), Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/1/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem. J. 371: 97-108
GroB-Hardt, R., and Laux, T. (2003). Stem cell regulation in the shoot
meristem. J. of Cell Science 116: 1659-1666.
Haberer, G. and Kieber, J.J (2002). Cytokinins. New insights into a classic
phytohormone. Plant Physiol. 128: 354-362.
Helliwell, C.A., Chin-Atkins, A.N., Wilson, I.W., Chapple, R., Dennis,
E.S. and Chaudhury, A. (2001). The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell, 13: 2115-2125.
Hobbie, L. and Estelle, M. (1995). The axr4 auxin-resistant mu-tants of
Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7: 211—220.
Kakimoto, T. (2001). Identification of plant cytokinin biosynthetic enzymes as
dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 42: 677—685.
Kaya, H., Shibahara, K.I., Taoka, K.I., Iwabuchi, M., Stillman, B. and
Araki, T. (2001). FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104: 131-142.
Kayes, J.M. and Clark, S.E. (1998). CLAVATA2, a regulator of meristem
and organ development in Arabidopsis. Development 125: 3843-3851.
Keddie, J.S., Carroll, B.J., Thomas, C.M., Reyer, M.E.C., Klimyuk, V.,
Holtan, H., Gruissem, W. and Jones, J.D.G. (1998). Transposon tagging of the Defective embryo and meristems gene of tomato. Plant Cell 10: 877-887.
Kerk, N.M. and Feldman, J.L. (1995). A biochemical model for the
initiation and maintenance of the quiescent center: Implications for organization of root meristems. Development 121: 2825-2833.
Kikuchi, K., Ueguchi-Tanaka, M., Yoshida, K.T., Nagato, Y., Matsusoka,
M. and Hirano, H.Y. (2000). Molecular analysis of the NAC gene family in rice. .Mol. Gen. Genet. 262: 1047-1051.
Laufs, P., Dockx, J., Kronenberger, J. and Traas, J. (1998a). MGOUN1
and MGOUN2: two genes required for primordium initiation at the shoot apical and floral meristem in Arabidopsis thaliana. Development 125: 1253-1260.
Laufs, P., Grandjean, O., Jonak, C., Kieˆu, K. and Traas, J. (1998b).
Cellular Parameters of the Shoot Apical Meristem in Arabidopsis. Plant Cell 10: 1375-1390.
Laux, T., Mayer, K.F., Berger, J. and Ju¨rgens, G. (1996). The
WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122: 87-96.
Lenhard, M., Bohnert, A., Ju¨rgens, G. and Laux, T. (2001). Termination
of stem cellmaintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105: 805—814.
Lenhard, M., Ju¨rgens, G. and Laux, T. (2002). The WUSCHEL and
SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129: 195-206.
Li, Y., G. Hagen, and T. J. Guilfoyle (1992). Altered morphology in
transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Dev. Biol. 153: 386-395.
Li, Y., X. Shi, T. J. Strabala, G. Hagen, and T. J. Guilfoyle (1994).
Transgenic tobacco plants that overproduce cytokinins show increased tolerance to exogenous auxin and auxin transport inhibitors. Plant Sci. 100: 9-14.
Liu, S-C. (2003). Molecular cloning and functional analysis of E3 RING
finger genes from Arabidopsis thaliana. M.S. thesis, National Chung Hsing University, Taiwan.
Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R.
and Weigel, D. (2001). A molecular link between stem cell regulation and floral patterning inArabidopsis. Cell 105: 793—803.
Long, J.A., Moan, E.I., Medford, J.I. and Barton, M.K. (1996). A
member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66-69.
Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Ju¨rgens, G. and
Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95: 805-815.
McNellis, T.W. and Deng, X.-W. (1995). Light control of seedling
morphogenetic pattern. Plant Cell 7: 1749-1761.
Medford, J.I. (1992). Vegetative apical meristems. Plant Cell 4:
1029-1039.
Meyerowitz, E.M. (1997). Genetic control of cell division patterns in
developing plants. Cell 88: 299-308.
Mok, D.W.S. and Mok, M.C. (2001). Cytokinin metabolism and action.
Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 89-118.
Mok, M.C., Martin, R.C. and Mok, D.W.S. (2000). Cytokinins:
biosynthesis, metabolism and perception. In Vitro Cell. Dev. Biol. Plant 36: 102-107.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth
and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-479.
Nogue , F., Hocart, C., Letham, D.S., Dennis, E. and Chaudhury, A.
(2000a). Cytokinin biosynthesis is higher in the Arabidopsis amp1 mutant. Plant Growth Regul. 32: 267-273.
Nogue , F., Grandjean, O., Craig, S., Dennis, E. and Chaudhury, A.
(2000b). Higher levels of cell proliferation rate and cyclin CycD3 expression in the Arabidopsis amp1 mutant. Plant Growth Regul. 32: 275-283
Ori, N., Eshed, Y., Chuck, G., Bowman, J. and Hake1, S. (2000).
Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127: 5523-5532.
Prigge, M.J. and Ry Wagner, D. (2001). The Arabidopsis SERRATE gene
encodes a Zinc-Finger protein required for normal shoot development. Plant Cell 13: 1263-1279.
Reiser, L., Sanchez-Baracaldo, P. and Hake, S. (2000). Knots in the
family tree: evolutionary relationships and functions of knox homeobox genes. Plant Mol. Biol. 42: 151-166.
Ren, T., Qu, F. and Morris, T.J. (2000). HRT gene function requires
interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12: 1917-1925
Ridgeway, P. and Almouzni, G. (2000). CAF-1 and inheritance of
chromatin states: at the crossroads of DNA replication and repair. J. Cell Sci. 113: 2647-2658.
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L,
Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110.
Rojo, E., Sharma, V.K., Kovaleva, V., Raikhel, N.V. and Fletcher, J.C.
(2002). CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14: 969-977.
Rupp, H., Frank, M., Werner, T., Strnad, M. and Schmulling, T. (1999).
Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J. 18: 557-563.
Sanger F., Nicklen S., and Coulson A.R. (1997). DNA sequencing with
chain-teminating inhibitors. Proc. Natl. Acad. Sci. USA. 74, 5463-5467.
Sabatini, S., Heidstra, R., Wildwater, M. and Scheres, B. (2003).
SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev. 17: 354-358.
Sablowski, R.W.M. and Meyerowitz, E.M. (1998) A homolog of NO
APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92: 93-103.
Satina, S., Blakeslee, A. F. and Avery, A. (1940). Demonstration of three
germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot. 27: 895-905.
Scheres, B., Wolkenfelt, H., Willemsen, V., Terlouw, M., Lawson, E.,
Dean, C. and Weisbeek, P. (1994). Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120: 2475-2487.
Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Ju¨rgens, G. and
Laux, T. (2000). The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100: 635-644.
Semiarti1, E., Ueno, Y., Tsukaya, H., Iwakawa, H., Machida, C. and
Machida, Y. (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128: 1771-1783.
Serrano-Cartagena, J., Robles, P., Ponce, M.R. and Micol, J.L. (1999).
Genetic analysis of leaf form mutants from the Arabidopsis Information Service collection. Mol. Gen. Genet. 261: 725—739.
Sinha, N.R., Williams, R.E. and Hake, S. (1993). Overexpression of the
maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev. 7: 787-795.
Skoog, F. and Miller, C.O. (1957). Chemical regulation of growth and
organ formation in plant tissue culture in vitro. Symp. Soc. Exp. Biol. 11: 118-131.
Smart CM, Scofield SR, Bevan MW, Dyer TA. (1991). Delayed leaf
senescence in tobacco plants transformed with tmr a gene for cytokinin production in Agrobacterium. Plant Cell 3: 647—656.
Smith, S. and Stillman, B. (1989). Purification and characterization of
CAF-1, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58: 15-25.
Souer, E., van Houwelingen, A., Kloos, D., Mol, J. and Koes, R. (1996).
The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85: 159-170.
Sun J, Niu QW, Tarkowski P, Zheng B, Tarkowska D, Sandberg G, Chua
NH, Zuo J. (2003). The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiol. 131: 167—176.
Theissen, G. (2001). Development of floral organ identity: stories from
the MADS house. Curr. Opin. Biol. 4: 75-85.
Theissen, G. and Saedler, H. (2001). Floral quartets. Nature 409:
469-471.
Takada, S., Hibara, K., Ishida, T. and Tasaka, M. (2001). The
CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127-1135.
Takei, K., Sakakibara, H., Sugiyama, T. (2001). Identification of genes
encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem. 276: 26405-26410.
Talbert, P.B., Adler, H.T., Parks, D.W. and Comai, L. (1995). The
REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thatiana. Development 121: 2723-2735.
Thomas JC, Smigocki AC, Bohnert HJ. (1995). Light-induced expression
of ipt from Agrobacterium tumefaciens results in cytokinin accumulation and osmotic stress symptoms in transgenic tobacco. Plant Mol. Biol. 27: 225—235.
van den Berg, C., Willemsen, V., Hendriks, G., Weisbeek, P. and Scheres,
B. (1997). Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287-289.
Verreault, A. (2000). De novo nucleosome assembly: new pieces in an old
puzzle. Genes Dev. 14: 1430-1438.
Werner T, Motyka V, Strnad M, Schmulling T. (2001). Regulation of
plant growth by cytokinin. Proc. Natl. Acad. Sci. U. S. A. 98: 10487—10492.
Willemsen, V., Wolkenfelt, H., de Vrieze, G., Weisbeek, P. and Scheres,
B. (1998). The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125: 521-531.
Xie, Q., Sanz-Burgos, A.P., Guo, H., Garcı´a, J.A. and Gutie´rrez, C.
(1999). GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol. Biol. 39: 647-656.
Xie, Q., Frugis, G., Colgan, D. and Chua, N-H. (2000). Arabidopsis
NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14: 3024-3036.
Xie, Q., Guo, H-S., Dallman, G., Fang, S., Weissman, A.M. and Chua,
N-H. (2002). SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419: 167-170.
Yang, C.-H., Cheng, L.-J. and Sung, Z. R. (1995). Genetic regulation of
shoot development in Arabidopsis: the role of EMF gene. Dev. Biol. 169, 421-435.
Zubko E, Adams CJ, Machaekova I, Malbeck J, Scollan C, Meyer P.
(2002). Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J. 29: 797—808.
台灣農家要覽農作物篇(二). 農業委員會台灣農家要覽增修訂再版
策劃委員會/財團法人豐年社編著 再版
莊涵茹.1998. Trypsin Inhibitor基因轉殖於青花菜(Brassica oleracea
var. italica ). 國立中興大學農業生物科技學研究所碩士論文
Ameisen, J.C. (1996). The origin of programmed ell death. Science 272:
1278-1279.
Amasino, R.M. (1996). Control of flowering time in plants. Curr. Opin.
Genet. Develop. 6: 480-487.
Araki, T. (2001). Transition from vegetative to reproductive phase. Curr.
Opin. Plant Biol. 4: 63-68.
Aubert, D., Chen, L., Moon, Y.H., Martin, D., Castle, L.A., Yang, C-H.
and Sung, Z.R. (2001). EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13: 1865-1875.
Aukerman, M.J., Lee, I., Weigel, D. and Amasino, R.M. (1999). The
Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J. 18: 195-203.
Bechtold, N., Ellis, J. and Pelletier, G. (1993). In planta
Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Ser. III Sci. Vie 316: 1194-1199.
Bleecker, A.B. and Patterson, S.E. (1997). Last exit: senescence,
abscission, and meristem arrest in Arabidopsis. Plant Cell. 9:
1169-1179.
Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M. and Smyth,
D.R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119: 721-743.
Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. and Coen, E. (1997).
Inflorescence commitment and architecture in Arabidopsis. Science 275: 80-83.
Chen, C-F. and Yang, C-H. (2003). The C-terminal part of BpGI, a
GIGANTEA (GI) orthologue of woody plant Bauhinia purpurea, is sufficient to compensate gi mutation in Arabidopsis. 7Th International Congress of Plant Molecular Biology. Barcelona, Spain. June 23-28, 2003. Abstract # S20-24.
Chen, C-F. and Yang, C-H (2004). Novel roles for late-flowering gene
GIGANTEA (GI) orthologues in regulating leaf senescence and conferring resistance to bacteria infection in plants. Twelfth Symposium on Recent Advances in Cellular and Molecular Biology. Kanding, Taiwan. February 2-4, 2004. Abstract # P47.
Chen, L-F., Hwang, J-Y., Charng, Y-Y., Sun, C-W. and Yang, S-F. (2001).
Transformation of broccoli (Brassica oleracea var. italica) with isopentenyl transferase gene via Agrobacterium tumefaciens for post-harvest yellowing retardation. Mol. Breed. 7: 243-257.
Chou, M-L., Haung , M-D. and Yang, C-H (2001). EMF interact with
late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis. Plant Cell Physiol. 42 : 499-507.
Chou, M-L. and Yang, C-H. (1998). FLD interacts with genes that affect
different developmental phase transitions to regulate Arabidopsis shoot development. Plant J. 15: 231-242.
Clarke, S.F., Jameson, P.E. and Down, C. (1994). The influence of
6-benzylaminopurine on post-harvest senescence of floral tissue of broccoli (Brassica oleracea var. italica). Plant Growth Regul. 14: 21-27.
Clarke, J.H. and Dean, C. (1994). Mapping FRI, a locus controlling
flowering time and vernalization response. Mol. Gen. Genet. 242: 81-89.
Curtis, I.S., Nam, H.G., Yun, J.Y. and Seo, K-H. (2002). Expression of an
antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res. 11: 249- 256.
Coupland, G. (1995). Genetic and environmental control of flowering
time in Arabidopsis. Trends Genet. 11 : 393-397
Dietrich, R.A., Delaney, T.P., Uknes, S.J., Ward, E.R., Ryals, J.A. and
Dangl, J.L. (1994). Arabidopsis mutants simulating disease resistance response. Cell 77: 565-577.
Eimert, K., Wang, S-W., Lue, W-L. and Chen, J. (1995). Monogenic
recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7: 1703-1712.
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B.,
Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18: 4679-4688.
Fukuda, H. (1996). Xylogenesis: initiation, progression, and cell death.
Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 299-325.
Fukuda, H. (1997). Tracheary element differentiation. Plant Cell 9:
1147-1156.
Gan, S. and Amasino, R.M. (1995). Inhibition of leaf senescence by
autoregulated production of cytokinin. Science 270: 1986-1988.
Gan, S. and Amasino, R.M. (1997). Making sense of senescence.
Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol. 113: 313-319.
Gerschenson, L.E. and Totello, R.J. (1992). Apoptosis: a different type of
cell death. FASEB J. 6: 2450-2455.
Grbic, V. and Bleecker, A.B. (1996). An altered body plan is conferred on
Arabidopsis plants carrying dominant alleles of two genes. Development 122: 2395-2403.
Greenberg, J.T., Guo, A., Klessig, D.F. and Ausubel, F.M. (1994).
Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77: 551-563.
Guo, H., Yang, H., Mockler, T.C. and Lin, C. (1998). Regulation of
flowering time by Arabidopsis photoreceptors. Science 279: 1360-1363.
Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. (1994). Regulation
of the Arabidopsis floral homeotic gene APETALA1. Cell 76: 131-143. Haung, M-D. and Yang, C-H. (1998). EMF genes interact with late-flowering genes to regulate Arabidopsis shoot development. Plant Cell Physiol. 39: 382-393.
Hengartner, M.O. and Horvitz, H.R. (1994). The ins and outs of
programmed cell death during C. elegans development. Philos.Trans. R. Soc. Lond. B Biol. Sci. 345: 243-246.
Hicks, K.A., Millar, A.J., Carre, I.A., Somers, D.E., Straume, M., Ry
Meeks-Wagner, D., and Steve, A.K. (1996). Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274: 790-792.
Ingram, G.C., Goodrich, J., Wilkinson, M.D., Simon, R., Haughn, G.W.
and Coen, E.S. (1995). Paralleles between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in
Arabidopsis and Antirrhinum. Plant Cell 7: 1501-1510.
Irish, V.F. and Sussex, I.M. (1990). Function of the apetala-1 gene during
Arabidopsis floral development. Plant Cell 2: 741-753.
Jones, A.M. and Dangl, J.L. (1996). Logjam at the Styx: programmed cell
death in plants. Trends Plant Sci. 1: 114-119.
Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K.,
Nguyen, J. T., Chory, J., Harrison, M. J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286: 1962-1965.
Karim, F.D., Chang, H.C., Therrien, M., Wasserman, D.A., Laverty, T.,
and Rubin, G.M. (1996). A screen for genes that function downsterm of Ras1 during Drosophila eye development. Genetics 143: 315-329.
Katsuhara, M. (1997). Apoptosis-like cell death in barley roots under salt
stress. Plant Cell Physiol. 38: 1091-1093.
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A
pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-1962.
Koornneef, M., Hanhart, C.J. and van der Veen, J.H. (1991). A genetic
and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57-66.
Koornneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart,
C.J. and Peeters, A.J. (1998a). Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148: 885-892.
Koornneef, M., Alonso-Blanco, C., Peeters, A.J. and Soppe, W. (1998b).
Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345-370.
Kurepa, J., Smalle, J., Montagu, M.V. and Inze, D. (1998). Oxidative
stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J. 16 (6): 759-764.
Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D.,
Weaver, L.M., John, M.C., Feldmann, K.A. and Amasino, R.M. (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75-83.
Levy, Y.Y. and Dean, C. (1998). The transition to flowering. Plant Cell
10: 1973-1990.
McCabe, M.S., Garratt, L.C., Schepers, F., Jordi, W., Stoopen, G.M.,
Davelaar, E., van Rhijn, J.H.A., Power, J.B. and Davey, M.R. (2001). Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol. 127: 505-516.
Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K.,
Westphal, L., Murphy, G., Sherson, S., Cobbett, C. and Dean, C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89: 737-745.
Martinez-Zapater, J.M., Jarillo, J.A., Cruz-Alvarez, M., Roldan, M.and
Salinas, J. (1995). Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant J. 7: 543-551.
McCabe, P.F., Levine, A., Meijier, P.-J., Tapon, N.A. and Pennell, R.I.
(1997). A programmed cell death pathway activated in carrot cell cultured at low cell density. Plant J. 12: 267-280.
Mittler, R. and Lam, E. (1995). In situ detection of nDNA fragmentation
during the differentiation of tracheary elements in higher plants. Plant Physiol. 108: 489-493.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth
and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-479.
Napp-Zinn, K. (1985). Arabidopsis thaliana. In: CRC Handbook of
Flowering. (ed. A.H. Halevy), pp. 492-503. CRC Press, Inc., Boca Raton, FL.
Nilsson, O., Lee, I., Blázquez, M.A. and Weigel, D. (1998). Flowering
time genes modulate the response to LEAFY activity. Genetics 150: 403-410.
Noodén, L.D. and Leopold, A.C. (1978). Phytohormones and the
endogenous regulation of senescence and abscission. In Phytohormones and Related Compounds: A comprehensive Treatise, Volume 2. Edited by Letham, D. Goodwin, P., and Higgins, T. pp. 329-369. Elsevier Press, New York.
Orzaez, D. and Granell, A. (1997a). DNA fragmentation is regulated by
ethylene during carpel senescence in Pisum sativum. Plant J. 11: 137-144.
Orzaez, D. and Granell, A. (1997b). The plant homologue of the defender
against apoptotic death gene is down-regulated during senescence of flower petals. FEBS Lett. 404: 275-278.
Page, T., Macknight, R., Yang, C-H. and Dean, C. (1999). Genetic
interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation. Plant J. 17: 231-239.
Park, D. H., Somers, D. E., Kim, Y. S., Choy, Y. H., Lim, H. K., Soh, M.
S., Kim, H. J., Kay, S. A. and Nam, H. G. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285: 1579-1582.
Pennell, R. and Lamb, C. (1997). Programmed cell death in plants. Plant
Cell 9: 1157-1168.
Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G. (1995). The
CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-857.
Piñeiro, M. and Coupland, G. (1998). The control of flowering time and
floralidentity in Arabidopsis. Plant Physiol. 117: 1-8.
Ruiz-Garcia, L., Madueno, F., Wilkinson, M., Haughn, G., Salinas, J. and
Martinez-Zapater, J.M. (1997). Different role of flowering time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9: 1921-1934.
Rushing, J.W. (1990). Cytokinins affect respiration, ethylene production,
and chlorophyll retention of packaged broccoli floret. Hort. Sci. 25: 88-90.
Ryerson, D.E. and Heath, M.C. (1996). Cleavage of nuclear DNA into
oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatment. Plant Cell 8: 393-402.
Sanda, S.L. and Amasino, R.M. (1996). Ecotype-specific expression of a
flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol. 111: 641-644.
Schomburg, F. M., Patton, D. A., Meinke, D. W. and Amasino, R. M.
(2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13: 1427-36.
Schultz, E.A. and Haughn, G.W. (1993). Genetic analysis of the floral
initiation process (FLIP) in Arabidopsis. Development 119: 745-765
Shannon, S. and Meeks-Wanger, D.R. (1991). A mutation in the
Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3: 877-892.
Simon, R., Igeno, M.I. and Coupland, G. (1996). Activation of floral
meristem identity genes in Arabidopsis. Nature 384: 59-62.
Smart, C.M., Scofield, S.R., Bevan, M.W. and Dyer, T.A. (1991).
Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 3: 647-656.
Soppe, W.J.J., Jacobsen, S.E., Alonso-Blanco, C., Jackson, J.P., Kakutani,
T., and Koornneef, M. and Peeters, A.J.M. (2000). The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 6: 791-802.
Sung, Z.R., Belachew, A., Bai, S. and Bertrand-Garcia, R. (1992). EMF,
an Arabidopsis gene required for vegetative shoot development. Science 258, 1645-1647.
Taylor, C.B., Bariola, P.A., Delcardayre, S.B., Raines, R.T. and Green,
P.J. (1993). RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc. Natl. Acad. Sci. USA 90: 5118-5122.
Thomson, W.W. and Platt-Aloia, K. A. (1987). Ultrastructure and
senescence in plants. In Plant Senescence: Its Biochemistry and Physiology. Edited by Thomson, W., Nothnagel, E. and Huffaker, R. pp. 20-30. American Society of Plant Physiologists, Rockville, MD.
Vaux, D.L., Haecker, G. and Strasser, A. (1994). An evolutionary
perspective on apoptosis. Cell 76: 777-779.
Vaux, D.L. and Strasser, A. (1996). The molecular biology of apoptosis.
Proc. Natl. Acad. Sci. USA 93: 2239-2244.
Weigel, D. and Nillson, O. (1995). A developmental switch sufficient
for flower initiation in diverse plants. Nature 377:495-500
Wang, H., Li, J., Bostock, R.M. and Gilchrist, D.G. (1996). Apoptosis: a
functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8: 375-391.
Wang, M., Oppedijk, B.J., Lu, X., Van Duijn, B. and Schilperoort, R.A.
(1996). Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol. Biol. 32: 1125-1134.
Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F. and Meyerowitz,
E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.
Yang, C-H., Cheng, L-J. and Sung, Z.R. (1995). Genetic regulation of
shoot development in Arabidopsis: the role of EMF genes. Dev. Biol. 169: 421-435.
Yang, C-H. and Chou, M-L. (1999). FLD interacts with CO to affect both
flowering time and floral initiation in Arabidopsis thaliana. Plant Cell Physiol. 40: 647-650.
Yen, C-H. and Yang, C-H. (1998). Evidence for programmed cell death
during leaf senescence in plants. Plant Cell Physiol. 39: 922-927.
Yoshida, N., Yanai, Y., Chen, L., Kato, Y., Hiratsuka, J., Miwa, T., Sung,
Z. R. and Takahashi, S. (2001). EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13: 2471-81.
Zagotta, M.T., Shannon, S., Jacobs, C. and Meeks-Wagner, R. (1992).
Early-flowering mutants of Arabidopsis thaliana. Aust. J. Plant Physiol. 19: 411-418.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔