跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/03/01 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張子欽
研究生(外文):Z. C. Chang
論文名稱:銦錫銀共晶合金與鎳微接點接合強度暨微結構之研究
論文名稱(外文):Studies on Microjoints and Microstructure for the Eutectic alloy of In-Sn-Ag in Ni
指導教授:薛富盛薛富盛引用關係
指導教授(外文):F. S. Shieu
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:152
中文關鍵詞:無鉛銲錫共晶合金固液擴散接合電子顯微鏡介金屬
外文關鍵詞:Lead-less solderEutectic alloySolid/ liquid diffusion joint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:558
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究係以無鉛銲錫之低熔點金屬合金為對象,探討高熔點金屬鎳,浸鍍於低熔點金屬銀-錫及銀-銦共晶合金熔湯之固-液擴散反應機構,並求得其界面反應動力學。由於高熔點金屬會和低熔點金屬合金形成介金屬(Intermetallic)化合物,經由相互的「固態擴散反應」(solid state interdiffusion reaction)或「固液擴散反應」(solid-liquid interdiffusion reaction)形成高熔點的介金屬化合物 (intermetallic compounds) 並完全取代原有之低熔點合金。研究內容包括界面反應、微結構分析、接合機械性質等。
研究結果顯示:(1)經TEM、XRD及SEM分析,反應生成相在鎳/純銦熱蒸鍍薄膜系統為 Ni10In27和Ni2In3等相,平均剪應力為 8.1 MPa;在鎳/純錫熱蒸鍍薄膜系統為Ni3Sn4和Ni3Sn2等相,平均剪應力為 143.3 MPa。(2)鎳/純銦經300℃-500℃熱浸反應後,以EDS, XRD分析,所產生的介金屬相有Ni10In27及Ni2In3介金屬相。鎳/純銦銲錫熱浸反應系統可得到最大剪應力為7.6 MPa,其反應活化能Q=31.6 kJ/mol;在300℃~500℃鎳/純錫銲錫熱浸反應系統,以EDS分析,結果僅出現Ni3Sn4介金屬相,但利用XRD分析可得到Ni3Sn4和Ni3Sn2等相。其最大剪應力為71.5 MPa,其反應活化能在350℃~500℃為35.45 kJ/mol。(3)鎳/共晶銦銀銲錫熱浸反應系統經300℃-500℃熱浸反應後,以EDS, XRD分析,所產生的介金屬只發現Ni10In27及Ni2In3介金屬相,最大剪應力為36.3 MPa,其反應活化能Q=29.3 kJ/mol;而在300℃~500℃之鎳/共晶錫銀銲錫熱浸反應系統,以EDS及XRD分析結果則僅出現Ni3Sn4介金屬相,其最大剪應力為85.2 MPa,其反應活化能在300℃~500℃為39.1 kJ/mol。(4)利用歐傑電子分析儀(AES),分析鎳/共晶錫銀及鎳/共晶銦銀銲錫固態擴散反應形成之介金屬結構表面,結果所偵測到之銀訊號相當微弱,所以在本實驗研究中鎳只和銦或錫元素鍵結形成Ni10In27與Ni3Sn4等介金屬相。(5)介金屬化合物都屬脆性,硬度值皆非常高,本實驗以微小硬度機所測得之硬度達Hv(0.2/30)400以上。另外介金屬結構物的機械性質受其微結構及反應生成相所控制,而微結構及界面反應又受接合條件如溫度、時間、接合壓力所影響。
The studied of this thesis was focus on low melting alloy of lead-less solder. To discuss the reaction mechanism between high melting point nickel and low melting point eutectic alloy of silver-tin, silver-indium interface. Since intermetallic compounds were formed between high melting point metals and low melting point alloys interface, that the interface reactions, micro-structure, and interface adhesion properties could be studies by the methods of solid state interdiffusion and solid-liquid interdiffusion.
The results in our studies: (1) From transmission electron microscope (TEM), x-ray diffraction (XRD), and scanning electron microscope (SEM) analyses, the results displayed Ni10In27 and Ni2In3 phases forming at Ni/In interface whose average interface shear stress was 8.1 Mpa, Ni3Sn4 and Ni3Sn2 phases forming at Ni/Sn interface whose average shear stress was 143.3 Mpa. (2) There are Ni10In27 and Ni2In3 phases using XRD and energy dispersive spectrometer (EDS) were formed at Ni/In interface when temperature between 300oC and 500 oC. Moreover, the maximum interface shear stress was 7.6 Mpa and activation energy was 31.6 kJ/mol. At the Ni/Sn interfaces, Ni3Sn4 phase could only be observed by EDS, compared with EDS analysis Ni3Sn4 and Ni3Sn2 could be observed by XRD at temperature between 300oC and 500oC. Moreover, the maximum interface shear stress was 71.5 Mpa and activation energy was 35.45 kJ/mol. (3) There are Ni10In27 and Ni2In3 phases using XRD and EDS were formed in Ni/ eutectic In-Ag interface when temperature between 300oC and 500 oC. Moreover, the maximum interface shear stress was 36.3 Mpa and activation energy was 29.3 kJ/mol. However, Ni3Sn4 phase using EDS and XRD could only be observed at temperature between 300oC and 500oC in Ni/ eutectic Sn-Ag interface. Moreover, the maximum interface shear stress was 85.2 Mpa and activation energy was 39.1 kJ/mol. (4) Using auger electron spectroscopy (AES) analyses, that signal of Ag element was hardly detected from the interfaces of Ni/eutectic Sn-Ag, and Ni/eutectic In-Ag, therefore in our studies that Ni10In27, and Ni3Sn4 phases were easy formed from the bonding Ni to In or Sn elements. (5) The intermetallic compounds are brittle and hard, in our studied hardness of the compounds was higher than 400 MHv. In addition, mechanical properties of intermetallic compounds were controlled by microstructure and reaction phases, in other words, microstructure and reaction phase were controlled by temperature, reaction time, and joint pressure conditions.
目 錄
摘要……………………………………………………………………Ⅰ
誌謝……………………………………………………………………Ⅴ
目錄 …………………………………………………………………ⅤI
圖目錄 ……………………………………………………………… IX
表目錄………………………………………………………………XVII
第一章 緒 論
1-1 前 言 ………………………………………………………01
1-2 研究動機與目的……………………………………………05
第二章 固液擴散之理論及其文獻回顧
2-1 固液擴散接合之原理……………………………………14
2-2 文獻回顧與理論背景……………………………………17
2-3 國內外對無鉛銲錫之研究概況 …………………………23
第三章 實驗步驟與方法
3-1 實驗流程……………………………………………………31
3-2 實驗材料之純度與規格……………………………………31
3-2.1 模具製作…………………………………………31
3-2.2 鎳片準備…………………………………………32
3-2.3 共晶銦銀、共晶錫銀合金熔煉製作…………32
3-2.4 金屬薄膜鍍著……………………………………33
3-2.5 濺鍍系統…………………………………………33
3-2.6 固液擴散接合與接合強度測試…………………33
3-3 材料固液擴散接合…………………………………………33
3-3.1 切割與研磨 ………………………………………34
3-3.2 拉伸試驗 …………………………………………35
3-3.3 維克氏硬度試驗……………………………………35
3-4 分析儀器 ……………………………………………………35
3-4.1 X光繞射分析儀……………………………………36
3-4.2 掃描式電子顯微鏡…………………………………37
3-4.3 穿透式電子顯微鏡…………………………………37
3-4.4 歐傑電子儀 ………………………………………38
第四章 結 果 與 討 論
4-1 鎳/純鍚界面反應系統 ………………………………………44
4-1.1 鎳/純錫銲錫熱浸系統界面微結構與介金屬相之成長機制 …………………………………………… 44
4-1.2 鎳/純錫熱浸系統介金屬成長動力學 ……………48
4-1.3 鎳/純錫試片之拉伸性質測試 …………………… 50
4-1.4 鎳/純錫薄膜系統之機械性質與組成分析………… 51
4-2 鎳/純銦界面反應系統 ………………………………………70
4-2.1鎳/純銦熱浸系統微結構與介金屬相之成長機制…70
4-2.2 鎳/純銦試片之拉伸性質測試 ……………………73
4-2.3 鎳/純銦熱浸系統介金屬成長動力學 ……………74
4-2.4 鎳/純銦薄膜系統試片之拉伸性質測試與組成分析
…………………………………………………………… 76
4-3 鎳/共晶銦銀及鎳/共晶錫銀銲錫之界面反應 ……………92
4-3.1鎳/共晶錫銀銲錫熱浸系統微結構與介金屬相之成長機制 …………………………………………………92
4-3.2 鎳/共晶錫銀銲錫熱浸系統介金屬成長動力學 …99
4-3.3 鎳/共晶錫銀銲錫熱浸系統介金屬相之拉伸性質測試…………………………………………………101
4-4 鎳/共晶銦銀銲錫之界面反應 ……………………………119
4-4.1 鎳/共晶銦銀銲錫熱浸系統微結構與介金屬相之成長機制………………………………………………119
4-4.2 鎳/共晶銦銀銲錫熱浸系統介金屬成長動力學…123
4-4.3 鎳/共晶銦銀銲錫熱浸系統之拉伸性質測試……125
第五章 結 論……………………………………………………145
參考文獻………………………………………………………………148
參考文獻
1. 中華民國電子材料與元件協會,”亞太半導體製造中心策咯藍圖─矽金之島2010”, (1996)。
2. 鐘俐娟,”我國IC產業營運績效總體檢”,TSIA Newsletter專題報導 (2000)。
3. 劉政欣,”未來五年新興半導體應用產品”,工研院電子所 (1999)。
4. "Ball Grid Array Technology", ed. by J.H. Lau, McGvaw-Hill, (1995).
5."Handbook of Tape Automated Bonding", edit by J.H. Lau, Van Nostrand Rein-hold, New York, (1992).
6."Flip Chip Technologies", ed. J.H. Lau, McGraw-Hill, (1995).
7. D. D. L. Chung (Ed.), MateriaIs for Electronic Packaging, Buttworth-Heinemann, New York, (1995).
8. J. A. Sartell (Ed.), Electsonic Packaging: Materials and Processes, ASM international, Bloomington, Minnesota, (1985).
9.吳田玉, "Flip-Chip/BGA/COB關鍵技術研討會講義",工研院電子所, 7-9th, Jan., (1997) 。
10."Materials for Electronic Packaging", ed. by D.D.L. Chung, Buttworth-Heinemann, (1995).
11."Electronic Packaging: Materials and Processes", ed. by J.A. Sartell, Proc. ASM’s 2nd Electronic Packaging: Materials and Processes Conference, Bloomington, Minnesota, (1985).
12. S. K. Kang and A.k. Sarkhel, "Lead (Pb)-Free Solders for Electronic Packaging", J. Electronic Materials, 23, 8(1994) pp.701-707.
13."Intermetallische Phasen", ed. by O.Henkel, Deutscher Verlag fuer Grundstoffindustrie, Leipzig (1976).
14. H. Hieber, A.Swiderski, S.Bader and W.Gust, "Heat-Resistant Contacts with use of Liquid Phase Transition", Proc. 7th European Hybrid Microelectronics conference, Hamburg, Germany, 24-26 May (1989) Chap.1.4.
15."The Mechanics of Solder Alloy Interconnects", ed. by D.R. Frear, S.N. Burchett, H. S. Morgan and J.H. Lau, Van Nostrand Reinhold, New York, (1994).
16. L. Berntein and H. Bartholomew, Trans. Metall. Soc. AIME. 236, 405 (1966).
17. S. Bader, W. Gust and H. Hieber, Deutscher Verband fuer Schweisstechnik, Berichte 122(1994), p. 16.
18. S. Bader, W. Gust, and H. Hieber, Acta Metall. Mater. 43, 329 (1995).
19. F. Bartels, J. W. Morris Jr., G.Dalke and W.Gust, "Intermetallic Phase Formation in Thin Solid-Liquid Diffusion Couples", J.Electronic Materials, 23 (1994) pp.787-790.
20. S. Bader, W. Gust and H.lieber, "Bildung Intermetallischer Phasen durch Isotherme Erstarrung", Deutscher Verband fuer Schweisstechnik, Berichte 122 (19) pp.16-25.
21. L. Bernstein and H. Bartholomew, Metall.Trans A, 236, 405 (1966)
22. A. G. Guy and C. B. Smith, Trans. ASM, 55, 1 (1962)
23. J. S. Kirkaldy, R. J. Brigham, and D. H.Weichert, Acta Met., 13, 907 (1965)
24. C. Y. Li, R. Subrahmanyan, and J. McGroarty, Proc. Mat. Res. Soc. Symp, 203, 395 (1990)
25. D. C. Agrawal and R. Raj, Acta Metall. 37 1265 (1989)
26. F.S. Shieu, R.Raj, and S.L. Sass, Acta Metall. Mater., 38 2215 (1990)
27. A. Hayashi, C.R.Kao and Y.A. chang, Scripta Materialia, 37 393 (1997)
28. Y. C. Chen, W. W. So and C. C. Lee, IEEE transaction on Components, Hybrid and Manufacturing Technology. Part A 20 46 (1997)
29. R. Roy and S. K.Sen, J. Mater. Res., 7 1377 (1992)
30. Y. C. Chen and C. C. Lee, Thin Solid Films, 283 243 (1996)
31. Y. Ikuma and T.Murakami, J. Electrochem. Soc., 143 2698 (1996)
32. H. Ji, Y. Wang, R. G. Zhao, and W.S. Yang, Surface Science 380 507 (1997)
33. J. Kraft, M. G. Ramsey, and F. P. Netzer, Surface Science 372 L271 (1997)
34. H. Odaka, S. Iwata, N. Taga, S. Ohnishi, Y. kaneta, and Y. Shigesato, Jpn. J. Appl. Phys., 36 5551 (1997)
35. K. M. Unruh, T. E. Huber, and C. A. Huber, Physical Review B, 48 9021 (1993)
36. E. Taglauer, St. Reiter, A. Liegl, St. Schomann, Nuclear Instruments and Methods in Physics Reasearch B, 118 456 (1996)
37. P. P. Prosini, M. L. Addoniaio, and A. Antonaia, Thin Solid Films, 298 191 (1997)
38. J. Shi, S. N. Mei, and H.B. Huntington, J. Appl. Phys., 62 451 (1987)
39. B. N. Roy and T.Wright, Cryst. Res. Technol., 31 1039 (1996)
40. B. Brunetti, A. Giustini, and V. Piacente, J. Chem. Thermodynamics, 29 239 (1997)
41. M. C. Robinson and A. J. Slavin, J. Vac. Sol. Technol. A, 16 937 (1998)
42. C. May, J. Strumpfel, Thin Solid Films, 351, 48(1999)
43. L. S. Hsu, G.. H. Gweon, J. W. Allen, Journal Of Physics And Chemistry Of Solids, 60, 1627(1999)
44. R.C. Longo, C. Rey, L.J. Gallego, Surface Science, 424, 311(1999)
45. V. Santos, C.A. Kuhnen, Thin Solid Films, 350, 258(1999)
46. L. Gregoratti, S. Gunther, J. Kovac, M. Marsi, M. Kiskinova, Applied Surface Science, 144, 255 (1999)
47. S. Colin, E. Beche, R. Berjoan, H. Jolibois, A. Chambaudet, Corrosion Science, 41, 1051(1999)
48. A. Ishida, M. Sato, S. Miyazaki, Materials Science And Engineering: A, 273-275, 754(1999)
49. K. Umezawa, S. Nakanishi, W.M. Gibson, Surface Science, 426, 225(1999)
50. R. R. Tummala, E. J. Rymaszewaki and A.G. Klopfenstein, "Microelectronics Packaging Handbook", Chapman & Hall, New York, NY, (1997)
51. K. Shimizu, T. Nakanishi, K. Karasawa, K. Hashimoto, and K. Niwa, J. Elect. Mat. 24, 39 (1995).
52. L. Bernstein and H. Bartholomew, "Applications of Solid-Liquid Interdiffusion ( SLID ) Bonding in Integrated-Circuit Fabrication", Trans. Metall. Soc. AIME, Vol.236, pp. 405-412, 1966.
53. M. R. Baren, Binary Alloy Phase Diagrams, T. B. Massalski, Ed. Material Park, OH : ASM lntemational,pp.47-48, pp.95-96, 1990.
54. "Physical Metallurgy Principles", 3rd ed. By Robert E. Reed-Hill,Reza Abbaschian.
55. S. Bader, W. Gust and H. Hieber, "Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu- Sn and Ni- Sn Systems” Acta Metall. Mater., Vol. 43,No.1, (I995), pp. 329-337
56. P.G.. Harris and K. S. Chaggar, "The role of intermetallic compounds in lead- free soldering", Soldering & Surface Mount Technology, 10/3 (1998),pp.38-52
57. S.K.Kang and K. L. Lin, Ramachandran, "Grow Kinetics of Intermetallic Phases at the Liquid Sn and Solid Ni Interface", Scripta Metallurgica,VoI, 14,(1980),pp.421-424
58 C.-Y. Lee and K.L.Lin,"The interaction kinetics and compound formation between electroless Ni-P and solder”, Thin Solid Films, 249 (1994), pp. 201-206
59. R. Platzer, U. Wohrmann, X. L. Ding, R. Fink, G. Krausch, J. Voigt, R Wesche, and G. Schatz, "Compound Formation in Ni/In Thin Film Systems,” Hyper. Int., 60 (1990) 1003-1006.
60.Y. H. Tseng, M. S. Yeh, and T. H. Chuang, "Inlerlacial R.eactions Between Liquid Indium and Nickel Substrate,''" J. Electron. Mater., 28(2) (1999)105-107.
61. Y. Chen, W. W. So, and C. C. Lee, IEEE Trans. on Comp., Pac. and Manu. Tech. 20, 46 (1997).
62. L. Berntein, J. Electrochem. Soc. 113, 1282 (1966).
63. V. Simic and Z. Marinkovic, Thin Solid Film 61, 149 (1979).
64. C. C. Lee, C. Y. Wang, and G. Matijasevic, IEEE Trans. on Comp., Hyb., and Man. Tech. 16, 311 (1993).
65. D. M. Jacobson and G. Humpston, Metals and Materials 7, 733 (1991).
66. D. M. Jacobson and G. Humpston, Soldering and Surface Mount Technology 10, 27 (1992).
67. 陳俋菱,“電子構裝元件耐溫微接合研究—銀銦系統界面分析”,臺灣大學碩士論文,(1998),指導教授:莊東漢。
68. 陳信全,電子構裝申銀與錫界面性質之研究。台灣大學材料所碩士論文(1998),指導教授:莊東漢
69. 沈建國,“銦金耐溫微接點之固液擴散接合研究”,中興大學碩士論文,(1998),指導教授:薛富盛。
70. P. K. Khanna, S. K. Bhatnagar, G. Dalke, D. Brunner and W. Gust, “Debelopment of Thermally Stable Ni-Ag Interconnections for Application to Resistive Films”, Mat. Sci. Eng., B33, L6-L9, 1995.
71. W. K. Warburton and D. Turnbull, in Diffusion in Solids: Recent Developments, edited by A. S. Nowick and J. J. burton (Academic Press, New York, 1975).
72. Y.H.Pao, Proc. Res.Soc.Symp., 203 ,405 (1990)
73. S.Knecht, Proc. Res. Soc. Symp., 203, 411 (1990)
74. M.C.Shine, J.Seyyedi, T.Massingill, Z.Mei, and J.W.Morris, Jr., Proc. Mat. Res. Soc.Symp., 203 425 (1990)
75. W.H.Koh, S.Mayemura, and W.Kuipers, Proc.Mat.Res.Soc.Symp., 203 437 (1990)
76. R.Darveaux, E.Yung, I.Turlik, and K.L.Murty, Proc.Mat.Res.Soc.Symp., 203 443 (1990)
77.
78. k.N.Tu,Materials chemistry and physics, 46 217 (1996)
79. P.K.Khanna, S.K.Bhatnahar, G.Dalke, D.Brunner, and W.Gust, Mater.Sci.Eng., B33 L6 (1995)
80. F.Bartells and J.W.Morris, Jr., G.Dalke, and W.Gust, J.Electro.Mater., 23 787 (1994)
81. S. Bader, W. Gust, and H. Hieber, Acta Metall. Mater. 43, 329 (1995).
82. S.Bader, W.Gust and H.lieber, "Bildung Intermetallischer Phasen durch Isotherme Erstarrung", Deutscher Verband fuer Schweisstechnik, Berichte 122 (19) pp.16-25.
83. L. E. Davies, N. C. MacDonald, P. W. Palmberg, G.. E. Riach and R. E. Weber, Handbook of Auger Electron Spectroscopy, Physical Electronics (1978)
84. 曾乙修,“電子構裝銦錫無鉛銲錫與鎳及銅基材之界面反應研究”,臺灣大學碩士論文,(2000),指導教授:莊東漢。
85. Tu, K.N., Materials Chemistry and Physics Volume: 46, Issue: 2-3, November 12, 1996, pp. 217-223
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top