(3.227.208.0) 您好!臺灣時間:2021/04/18 13:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張銀佑
研究生(外文):Yin-Yu Chang
論文名稱:陰極電弧活化沈積含金屬類鑽碳膜之製程與特性研究
論文名稱(外文):Synthesis and Characterization of Metal-doped Amorphous Carbon Films Deposited by a Cathodic Arc Activated Deposition Process
指導教授:汪大永汪大永引用關係吳威德吳威德引用關係
指導教授(外文):Da-Yung WangWeiTe Wu
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:123
中文關鍵詞:陰極電弧含金屬類鑽碳膜電漿
外文關鍵詞:cathodic arcmetal doped amorphous carbonplasma
相關次數:
  • 被引用被引用:6
  • 點閱點閱:395
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文係利用陰極電弧活化沈積法製備含金屬類鑽碳膜,此項製程系統乃藉由高離化率陰極電弧金屬電漿源作為提供碳氫氣體之裂解反應,從而沈積具有sp3/sp2 鍵結之含金屬類鑽碳膜。此項製程之特點在於利用高離子能量之陰極電弧源可於同一製程中製備高附著力的多層膜,例如類鑽碳/碳化鉻/氮化鉻薄膜。
針對陰極電弧活化沈積之電漿特性採用Langmuir靜電探針與光激發光譜(Optical Emission Spectrometry, OES)量測陰極電弧活化沈積含金屬類鑽碳膜製程之電子與離子能量分佈與電漿物種分佈。研究顯示於低乙炔(C2H2)分壓下,高能量金屬電漿鉻原子與大量裂解碳原子共同沈積於基材上形成碳化鉻薄膜鍍層,隨著乙炔分壓提高,高能量金屬電漿裂解乙炔反應氣體形成之CH* 物種量增加,所沈積之薄膜逐漸形成非晶態含金屬類鑽碳膜,此製程屬於以金屬離子誘使碳氫氣體解離反應(metal ion-induced dissociation of hydrocarbon gases)之主要機構。
為了瞭解不同金屬電漿源對陰極電弧活化沈積含金屬類鑽碳膜之機械性質的影響,採用鉻、鈦及鋯等三種過渡金屬作為電漿源沈積以氮化鉻作為中介層之含金屬類鑽碳薄膜。由拉曼光譜分析、X光光電子光譜分析(XPS)及傅力葉紅外線光譜分析(FTIR)研究結果顯示含鉻類鑽碳膜具有較高之sp3/sp2鍵結比。機械性質與磨潤特性也隨著所含金屬種類不同而異,磨耗試驗結果顯示較緻密之含鉻類鑽碳膜具有最佳之磨耗性能(在室溫與碳化鎢球對磨情形下磨擦係數約0.1,鍍層磨損率為2 x 10E—17 m^3/Nm)。此含金屬類鑽碳膜之機械性質與磨潤性質與不同原子大小及電子結構之金屬在類鑽碳薄膜中之滲雜作用有關。
藉由引入不同量之反應氮氣於含鉻類鑽碳製程中,得以製備不同原子比例之Cr-C:H/N,由X光繞射分析(XRD)、歐傑光譜分析(AES)及高解析穿透式電子顯微鏡分析得知低含氮量之Cr-C:H/N呈非晶態組織,Cr-C:H/N薄膜中之含氮量與製程中之N2/C2H2反應氣體比例有關,同時經由X光光電子光譜分析(XPS)及傅力葉紅外線光譜分析(FTIR)研究結果顯示Cr-C:H/N薄膜中之含氮量也影響著sp1CN與sp3 C-N 鍵結的分佈。當氮原子在非晶碳組織中佔有一定比例時,此非晶碳鍍膜會建立一載子能量而使得鍍膜之導電度增加。
本研究利用在同一製程中製備含複層結構之金屬類鑽碳膜可成功適用於各種精密零組件、切削刀具與成型模具之應用,有效提昇產品之品質與效率。

Diamond-like Carbon (DLC) films containing various metal doping were synthesized by using a cathodic-arc activated deposition (CAAD) process. Metal plasma with intensive ion energies catalyzes the decomposition of hydrocarbon gases (C2H2), and induces the formation of hydrogenated amorphous carbon films with a mixture of sp2 and sp3 carbon bonds. The composite film structure consists of a metal- doped amorphous carbon film on top of a graded metal nitride interlayer, which provides enhanced mechanical and tribological properties. In this study, the plasma characteristics of the CAAD process for the deposition of metal-doped a-C:H was investigated by Langmuir probe measurement and optical emission spectroscopy.
The catalysis effect of three common transition metal plasmas, including Cr, Ti, and Zr was investigated. This experiment depicts the advantage of the catalysis effect of Cr plasma in synthesizing DLC films with a higher sp3 carbon bond ratio comparing with that of Ti and Zr plasma. The wear properties were correlated with the metal doping determined by atomic size and electronic configuration. A catalytic ability ranking of transition metals for the deposition of metal-doped amorphous carbon films was suggested.
Nitrogen was also introduced to form nitrogen-containing Cr-C:H/N films, which contained a mixture of sp2 and sp3 carbon bonds. The mechanical properties were correlated with the nitrogen doping. When nitrogen atoms occupy the substitutional sites to a large percentage, a donor energy level would be created and induces an increasing electrical conductivity.

Table of Contents
中文摘要 ……………………………………….……………….. 3
Abstract ……………………………………….……………….. 5
Table of Contents ……………………………….………………7
List of Tables ……………………………….………………..10
List of Figures ………….…………………….………………11
1. Introduction
1.1 Overview ………………………………………..14
1.2 Motivation ……………………………………………15
1.3 Organization .……………………………………….16
2. Review of Amorphous Carbon Films and Deposition Systems
2.1 A Review of Amorphous Carbon .………………….18
2.2 Introduction ………………………………………..18
2.2.1 Deposition Mechanism of a-C:H ………………….19
2.2.2 Atomic Structure and Characterization ….…..23
2.2.3 Mechanical Properties ………………….………..25
2.2.4 Deposition Techniques ………….…………………28
2.2.4.1 Ion Beam Deposition ……………………………….28
2.2.4.2 Pulsed Laser Deposition ……….…………………28
2.2.4.3 Sputtering ………………………….……………...29
2.2.4.4 Plasma Enhanced Chemical Vapor Deposition…..29
2.2.4.5 Cathodic Arc Evaporation ………………………..31
2.3 Cathodic Arc Evaporation and Cathodic Arc Activated Deposition
2.3.1 Introduction …………………………………………31
2.3.2 Cathodic Arc Evaporation ………………………..34
2.3.2.1 The Basics ……………………………………………34
2.3.2.2 Advantages and Disadvantages ……………………39
2.3.3 Cathodic Arc Activated Deposition .……………39
2.3.3.1 Energy requirements ………………………….....39
2.3.3.2 Description of Cathodic Arc Activated Deposition …....................................................40
2.4 Precursor considerations .……………………….41
3 Experimental Details
3.1 Deposition procedures …………………………….43
3.2 Plasma diagnostics .……………………………...48
3.3 Characterization methods of a-C:H films .……51
3.3.1 Field Emission Scanning Electron Microscopy..51
3.3.2 Transmission Electron Microscopy .…………….51
3.3.3 X-ray Diffraction ………………………………….51
3.3.4 Micro-Raman Spectroscopy …………………………52
3.3.5 Fourier Transform Infrared Spectrometry …...52
3.3.6 X-ray Photoelectron Spectroscopy ……………..53
3.3.7 Rutherford Backscattering Spectrometry .…….54
3.3.8 Elastic Recoil Detection Analysis………………54
3.4 Mechanical and Tribological Evaluation Instruments ……………………......................................55
4 Results and Discussion
4.1 Plasma reaction and growth mechanism in the CAAD process ……………....................................56
4.1.1 Langmuir Probe measurements in Cathodic Arc Activated Plasma …………………………………………………………….57
4.1.2 Optical Study of Metal-doped Amorphous Carbon Plasma ……………………………………………………………........61
4.1.3 Ion-induced Dissociation of Acetylene for the Growth of Metal-doped Amorphous Carbon Films …………………..67
4.2 Catalysis Effect of Metal Doping on Wear Properties of Metal-doped Amorphous Carbon Films .………………….73
4.2.1 Hypothesis .………………………………………….73
4.2.2 Microstructure Characterization .………………77
4.2.3 Chemical State and Bonding Analyses .………..81
4.2.4 Mechanical and Tribological Evaluation .…...88
4.3 Characterization of a-C:H/N films …………….94
4.3.1 Microstructure Characterization .………………94
4.3.2 FTIR Analyses ……………………………………..100
4.3.3 Mechanical properties …………………………..104
4.3.4 Electrical characteristics of the Cr-C:H/N films ………………….......................................106
5 Conclusions …………………………………………108
References ………………………………………………………111
致謝 ………………………………………………………………120
簡歷 ………………………………………………………………121
List of Tables
Table 2.1. Selected energies of ions emitted from a cathodic arc ………………......................................38
Table 3.1 Deposition parameters of CAE synthesized DLC films ………………46
Table 3.2 Deposition parameters of CAE synthesized nitrogen-containing a-C:H films .………………………………………47
Table 4.1 Ranking of catalytic power of transition metals for the Me-C:H films .....................................76
Table 4.2 Results of the deconvolution parameters performed on Raman spectra of CAAD synthiszed amorphous carbon films ………................................................84
List of Figures
Fig. 2.1 Ternary phase diagram of bonding in amorphous carbon-hydrogen system …………………….…………….…………...21
Fig. 2.2 Schematic temperature dependance of growth rate and etching rate of a-C:H ………………………………………… 22
Fig. 2.3 Variation of Young’s modulus with ta-C density …………………………...................................27
Fig. 2.4 Schematics of various deposition methods of amorphous carbon films …........................................33
Fig. 2.5. Schematic diagram of CAE deposition system.…37
Fig. 2.6. A typical cathodic arc source available from Multi-Arc. …………………....................................37
Fig. 2.7. Growth rate of a-C:H films deposited by PECVD vs. ionization potential of various precursor gases.……...42
Fig. 3.1 Schematic cathodic arc activated deposition system ……………………….....................................45
Fig. 3.2 Electrostatic probe characteristic …………...50
Fig. 4.1 Plasma parameters: (a) ion density, (b) electron density, and (c) electron temperature as a function of the C2H2 pressure. ………….………………….................50
Fig. 4.2 (a) Optical emission intensities of Cr, CH, C2, and Hαwith different C2H2 partial pressure in the CAAD process, and (b) emission intensity ratio of CH/Cr and C2/Cr. ……..65
Fig. 4.3 (a) Arc voltage variation with the C2H2 pressure in the CAAD process, and (b) target poisoning image at 2.0 Pa C2H2 pressure …………….……………....................66
Fig.4.4. RBS and its RUMP simulated spectra of the Cr-C:H films deposited at bias voltage of 100 V with 100 kHz pulsed frequency. ………………………..........................71
Fig. 4.5. Schematic plasma-surface reactions.…………..72
Fig. 4.6. Cross-section SEM micrographs of DLC films deposited by CAAD process with various metal doping: (a) Cr-C:H; (b) Ti-C:H, and (c) Zr-C:H. ……..............................78
Fig. 4.7. X-ray diffraction patterns of the metal-doped DLC coatings: (a) Cr-C:H; (b) Ti-C:H, and (c) Zr-C:H. ….. 79
Fig. 4.8 Raman spectra of CAAD-synthesized Cr-C:H, Ti-C:H, and Zr-C:H. ……...........................................82
Fig. 4.9. C1s core level XPS spectra of Cr-C:H, Zr-C:H and Ti-C:H films. ………......................................85
Fig. 4.10 Cr2p core level XPS spectra of Cr-C:H films..86
Fig. 4.11 Cross sectional HRTEM image of the Cr-C:H layer in the Cr-C:H/CrN film ………………………………………….…87
Fig. 4.12. Comparison of microhardness of the CAAD deposited DLC films measured by microhardness tester with a load of 10g. …………………………….................................91
Fig. 4.13. A typical Rockwell indentation image of Cr-C:H films …………………...................................92
Fig. 4.14. The friction properties of Cr-C:H, Zr-C:H and Ti-C:H films sliding against WC counterparts at a normal load of 10 N in air with 80% relative humidity. (a) Coefficient of friction versus sliding distance. (b) wear rates. …….93
Fig. 4.15. Cross-section SEM micrographs of amorphous carbon films deposited by CAAD process with various nitrogen doping: (a) Cr-C:H; (b) Cr-C:H/N (N2/C2H2=15%), and (c) Cr-C:H/N (N2/C2H2=25%). ……………………........................97
Fig. 4.16. N/C atomic concentration variation with the N2/C2H2 flow ratio in the CAAD process. .……………………………98
Fig. 4.17. Cross-sectional TEM micrograph of a Cr-C:H/N film with N/C atomic ratio of 4.5%. ………………………………99
Fig. 4.18. The FTIR spectra of the Cr-C:H and Cr-C:H/N (N2/C2H2 = 170%) films................................101
Fig. 4.19. Intensity ratio of C=N associated bonds (at 1600cm-1) and scissor vibration CH bonds (1430 cm-1) in the FTIR spectra of Cr-C:H and Cr-C:H/N films with various N2/C2H2 flow rate ratio……………………………………................103
Fig. 4.20. Rockwell indentation image of the Cr-C:H/N films with (a) N2/C2H2 = 7 % , and (b) N2/C2H2 = 90 %. .....105
Fig. 4.21. Spreading resistance of the Cr-C:H/N films …………………………..................................107

1. J. Robertson, Materials Science and Engineering R 37 (2002) 129-281.
2. J. Robertson, Surface and Coatings Technology, 50 (1992) 185.
3. S.J. Bull, Diamond and Related Materials, 4(1995) 827.
4. R. Gilmore, R. Hauert, Thin Solid Films, 398-399(2001) 199-204.
5. Y. Lifshitz, Diamond and Related Materials, 5(1996) 388.
6. Y. Lifshitz, Diamond and Related Materials, 8(1999) 1659.
7. A.A. Voevodin, M.S. Donley, Surface and Coatings Technology, 82 (1996) 199.
8. D. Sheeja, B.K.Tay, S.P. Lau, X.Shi, X. Ding, Surface and Coatings Technology, 132 (2000) 228-232.
9. D.Y. Wang, C.L. Chang, W.Y. Ho, Thin Solid Films 355—356 (1999) 246—251.
10. S. Zhang, Y. Fu, H. Du, X.T. Zeng, Y.C. Liu, Surface and Coatings Technology, 162 (2002) 42-48.
11. W. Jacob, W. Moller, Applied Physics Letter, 63 (1993) 1771.
12. W. Moller, Applied Physics A 56 (1993) 527.
13. A. Von Keudell, W. Jacob, Journal of Applied Physics 81 (1997) 1531.
14. W.M.M. Kessels, J.W.A.M. Gielen, M.C.M. van de Sanden, L.J. van Ijzendoom, D.C. Schram, Surface and Coatings Technology, 98 (1998) 1584.
15. A. A. Von Keudell, T. Schwarz-Sellinger, W. Jacob, Journal of Vacuum Science and Technology A 19 (2001) 101.
16. J. Robertson, E.O. O’Reilly, Physics Review B 35 (1987) 2946.
17. J. Robertson, Material Science Forum 52 (1990) 125.
18. Rainer Haerle, Elisa Riedo, Alfredo Pasquarello, Alfonso Baldereschi, Physics Review B 65 (2001) 45101.
19. Yusuke Taki, Osamu Takai, Thin Solid Films 316 (1998) 45-50.
20. J. Filik, P.W. May, S.R.J. Pearce, R.K. Wild, K.R. Hallam, Diamond and Related Materials 12 (2003) 974-978.
21. A. C. Ferrari, Diamond and Related Materials 11 (2002) 1053-1061.
22. K.W.R. Gilkes, S. Prawer, K.W.Nugent, J.Robertson, H.S. Sands, Y. Lifshitz, X. Shi, Journal of Applied Physics 87(10) (2000) 7283-7289.
23. M. Chhowalla, A. C. Ferrari, J. Robertson, G. A. J. Amaratunga, Applied Physics Letter, 76(11) (2000) 1429-1431.
24. A. C. Ferrari, J. Robertson, Physics Review B 61 (2000) 14095.
25. B. Bhushan, B.K. Gupta, M.H. Azarian, Wear 181-183 (1995) 743-758.
26. J. Robertson, Thin Solid Films 383 (2000) 81.
27. B. Schultrich, H.J. Scheibe, D. Drescher, H. Ziegele, Surface and Coatings Technology 98 (1998) 1097.
28. J. Robertson, Physics Review Letter 68 (1992) 220.
29. P. Koidl, C. Wagner, B. Dischler, J. Wagner, M. Ramsteiner, Material Science Forum 52 (1990) 41.
30. S.Yang, D. Camino, A.H.S. Jones and D.G.Teer, Surface and Coatings Technology, 124(2000) 110-116.
31. O. Wanstrand, M. Larsson and P. Hedenqvist, Surface and Coatings Technology, 111(1999) 247-254.
32. V.V. Glov, A.K. Kuleshov, D.P. Rusalsky, J.I. Onate and S.Z. Yang, Surface and Coatings Technology, 129(2000) 150-155.
33. K. Bewilogua, C.V. Cooper, C. Specht, J. Schroder, R. Wittorf and M. Grischke, Surface and Coatings Technology, 132(2000) 275-283.
34. A.A.Voevodin, J.P. O’Neill and J.S.Zabinshi, Thin Solid Films, 342(1999) 194-200.
35. M. Stuber, S. Ulrich, H. Leiste, A. Kratzsch and H. Hollek, Surface and Coatings Technology, 116-119(1999) 591-598.
36. J. S. Chen, S.P. Lau etal., Thin Solid Films, 398-399(2001) 110-115.
37. Q.Wei, R.J. Narayan etal., J. Vac. Sci. Technol. A17 (6)(1999) 3406-3414.
38. A.A. Voevodin, A.W. Phelps, J.S. Zabinshi, M.S. Donley, Diamond and Related Materials 5 (1996) 1264.
39. J.W.A.M. Gielen, M.C.M. van de Sanden, M.C. Schram, Applied Physics Letter 69 (1996) 152.
40. B.Druz, R.Ostan, S. Distefano, A. Hayes, V. Kanarov, V. Polyakov, Diamond and Related Materials 7 (1998) 965.
41. J. Haverkamp, R.M. Mayo, M.A. Bourham, J.Narayan, C. Jin, G. Duscher, Journa of Applied Physics, 93(6) (2003) 3627-3634.
42. Javier Diaz, Salvador Ferrer, Fabio Comin, Journal of Applied Physics, 84 (11) (1998) 572-576.
43. D.Y. Wang, C.L. Chang, Thin Solid Films, 392 (1) (2001) 11.
44. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994.
45. R. L. Boxman, D.M. Sanders, P.J. Martin, J.M. Lafferty, Handbook of Vacuum Arc Science and Technology, Noyes, New Jersey, 1995.
46. J. Kutzner, H.C. Miller, IEEE Trans. Plasma Science, 17 (1989) 688-694.
47. P.J. Martin, R.P. Netterfield, T.J. Kinder, Thin Solid Films, 193(1990) 77-83.
48. D. Y. Wang, U.S. patent No. 6,331,332.
49. D. Y. Wang, Ko-Wei Wang, Shi-Yao Huang, Diamond and Related Materials, 9(2000) 1762-1766.
50. A. Grill, Cold Plasma in Materials Fabrication, New York, IEEE press, 1994.
51. Sam Zhang, Hong Xie, Xianting Zeng, Peter Hing, Surface and Coatings Technology 122(1999) 219-224.
52. E.Riedo, F. Comin, and J. Chevier, Journal of Applied Physics vol. 88,No. 7(2000) 4365-4370.
53. F. Le Normand, J. Hommet, T. Szorenyi, C. Fuvchs , and E. Eograssy; Physical Review B, Vol. 64 (2001) 235416.
54. S.E. Rodil, A. C. Ferrari, J. Robertson, and W. I. Milne; Journal of Applied Physics vol. 89, No.10 (2002) 5425-5430.
55. M. Stuber, S. Ulrich, H. Leiste, A. Kratzsch, H. Holleck, Surface and Coatings Technology 116-119 (1999) 591-598.
56. B.K. Tay, Y.H. Cheng, X.Z. ding, S.P. Lau, X. Shi, G.F. You, D. Sheeja, Diamond and Related Materials, 10(2001) 1082-1087.
57. C.L. Chang, D.Y. Wang, Diamond and Related Materials, 10(2001) 1528-1534.
58. R.F. Huang, C.Y. Chan, C.H. Lee, J. Gong, K.H. Lai, C.S. Lee et al., Diamond and Related Materials, 10(2001) 1850-1854.
59. E. Hantzsche, IEEE Trans. Plasma Sci., 17(1989)657-660.
60. Da-Yung Wang, Ko-Wei Weng, Chi-Lung Chang, Wei-Yu Ho, Surface and Coatings Technology, 120—121 (1999) 622—628.
61. P.J. Martin, D.R. Mackenzie, R.P. Netterfield, P. Swift, S.W. Filipczuk, K.H. Muller et al., Thin Solid Films 153(1987)91.
62. M. Sakaki, T. Sakakibara, IEEE Trans. Plasma Sci. 22(1994) 1049.
63. Manish Chhoealla, Applied Physics Letters 83(8)(2003) 1542-1544.
64. K. J. Clay S. P. Speakman, G. A. J. Amaratunga, S. R. P. Silva, J. Appl. Phys. 79 (9)(1996)7227-7233.
65. A.N. Obraztsov, A.A. Zolotukhin, A.O. Ustinov, A.P. Volkov, Yu.P. Svirko, Carbon 41 (2003) 836-839.
66. A Pastol and Y Catherine, J. Phys. D: Appl. Phys. 23 (1990) 799-805.
67. W.D. Davis, H.C. Miller, Journal of Applied Physics, 40(1969)2212-2221.
68. A. de Graaf, A.H.M. Smets, K.G.Y. Letourneur, M.G.H. Boogaarts, D.C. Schram, Diamond and Related Materials 8 (1999) 677—681.
69. S. Mazouffre, M.G.H. Boogaarts, J.A.M. van der Mullen, D.C. Scharm, Physics Review Letter, 84(2001) 2622.
70. F.J. Gordillo-Vazquez, J.M. Albella, Plasma Sources Science and Technology, 13(2004) 50-57.
71. J. Benedikt, R.V. Woen, S.L.M. van Mensfoort , V. Perina , J. Hong , M.C.M. van de Sanden, Diamond and Related Materials 12 (2003) 90—97.
72. Chien-Min Sung, Ming-Fong Tai, International J. of Refractory Metals and Hard Materials 15(1997) 237-256.
73. Da-Yung Wang, Ko-Wei Wang, Chi-Lung Chang, Xien-Jien Guo, Diamond and Related Materials, 9(2000) 831-837.
74. B. Marchon, J. Gui, K. Grannen etal., IEEE Trans. Magn. 33 (1997) 3148.
75. M. Yoshikawa, G. Katagiri, H. Ishida etal., J. Appl. Phys. 64 (1988) 6464.
76. J.F. Zhao, Z.H. Liu, J.A. Mclaughlin etal., Diamond and Related Materials, 10(2001) 1070-1075.
77. E. Tomasella, C. Meunier, S. Mikhailov, Surface and Coatings Technology 141(2001) 286-296.
78. J. Diaz, G. Paolicelli, S. Ferrer, and F. Comin, Physical review B, vol.54, number 11(1996) 8064-8069.
79. P.Merel, M. Tabbal, M.Chaker, S. Moisa, J. Margot, Applied Surface Science 136(1998) 105-110.
80. S. Prawer, K.W. Nugent, Y. Lifshitz etal., Diamond and Related Materials, 5(1996) 433-438.
81. F. Rossi, B. Andre, A. Veen, etal., Thin Solid Films 253(1994) 85-89.
82. D. Mcculloch, S. Prawer, A. Hoffman, Phys. Rev. B 50 (1994) 5905.
83. J. Albert Sue, Anthony J. Perry, Jorg Vetter, Surface and Coatings Technology 68/69(1994) 126-130.
84. J. Albert Sue, Surface and Coatings Technology 54/55(1992) 154.
85. J. Vetter, W. Burgmer, H.G. Dederiches, Anthony J. Perry, Surface and Coatings Technology 61(1993) 209.
86. W.D. Munz, Surface and Coatings Technology 58(1993) 205.
87. F.M. kustas, N.S. Misra, R.Wei et al., STLE Tribol. Trans., 36 (1993) 113.
88. H.Dimigen, H.Hubsch, R. Memming, Appl. Phys. Letter, 50 (1987) 1056.
89. M.K.Arora, A.H.Lettington, D.R.Waterman, Diamond and Related Materials, 8(1998) 623.
90. Jun Qi, C. Y. Chan, I. Bello, C. S. Lee, S. T. Lee, J. B. Luo , S. Z. Wen, Surface and coatings Technology 145(2001)38-43.
91. C. Ronning, H. Feldermann, R. Merk, and H. Hofsass, Physical review B, Vol. 58, No. 4 (1998) 2207-2215.
92. Mei Zhang, Yoshikazu Nakayama, Tsutomu Miyazaki, and Masato Kume, Journal of Applied Physics vol. 85,No. 5(1999) 2904-2907.
93. L. Valentini, L. Lozzi, V. Salerni, I. Armentano, J.M. Kenny, S. Santucci, Journal of Vacuum Science and Technology A21(3)(2003) 582-588.
94. M. L. De Giorgi et al., Appl. Surf. Sci. 127-129 (1998) 481.
95. B. Meyerson, F.W. Smith, Journal of Non-crystalline Solids 35-36 (1980) 435.
96. M.L. Theye, V. Paret, Carbon 40 (2002) 1153-1166.
97. S.B. Wang, P.R. Zhu, Materials Science and Engineering B76 (2000) 83-86.
98. J. Robertson, Diamond and Related Materials, 3(1994) 361.
99. M. Kaukonen and R. M. Nieminen, S. Pöykkö, Ari P. Seitsonen, Physical Review Letters, Vol. 83 (25)( 1999) 5346-5349.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳麗如(民89)。幼稚園與小學一年級注音符號學習銜接問題研究。國立屏東師範學院國民教育研究碩士論文,未出版,屏東。
2. 陳艾妮(民76)。婦女的社區參與─家庭與社會參與在定義(下),社區發展季刊,38,59-64。
3. 陸又新(民82)。國語教學中常見的語音錯誤及矯正方法之探討。屏東師院學報,4,79-106。
4. 張新仁、邱上真、李素慧(民89)。國中英語科學習困難學生之補救教學成效研究。教育學刊,16,163-191。
5. 張雅婷(民87)。上聲聲調發音困難原因及其教學。師友月刊,402,82-84。
6. 胡建雄(民81a)。評介「注音符號教學的基本認識」。北師語文教育通訊,1,74-80。
7. 胡永崇(民85)。障礙兒童轉介前介入的意義與做法。特教園丁,1,24-27。
8. 陳定銘(民88)。非營利組織義工招募與甄選的探討。社區發展季刊,85,128-141。
9. 陳政智(民88)。非營利組織中志願工作之管理:從人力資源管理觀點。社區發展季刊,58,117-127。
10. 孟瑛如、鍾曉芬(民92)。資源班國語科注音符號教材設計原則探討。國小特殊教育,36,63-72。
11. 林素貞(民87)。國小一年級中文讀寫障礙學生字詞學習特質之研究。特殊教育研究學刊,16,185-202。
12. 吳敏而(民79b)。入小學的第一個危機(下)-未雨綢繆談注音。學前教育,14,20-21。
13. 吳敏而(民79a)。入小學的第一個危機(上)-未雨綢繆談注音。學前教育,13,16-17。
14. 李慶泰(民88) 。給他們機會,他們會做的更好─推行學校義工制度效能篇。教師之友,40(5),57-62。
15. 李重毅(民92)。由團隊合作理念談特殊教育教師角色。特教園丁,2,47-59。
 
系統版面圖檔 系統版面圖檔