(3.230.76.48) 您好!臺灣時間:2021/04/12 15:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳瑞龍
研究生(外文):Rhelong Chen
論文名稱:電化學沈積HA/TiO2生醫陶瓷鍍膜於Ti-6Al-4V合金製程參數之研究
論文名稱(外文):The Study of Process Parameter of Electrolytic HA/TiO2 Bioceramic Coatings on Ti-6Al-4V alloy
指導教授:顏秀崗顏秀崗引用關係
指導教授(外文):S. K. Yen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:155
中文關鍵詞:電解沉積氫氧基磷灰石氧化鈦Ti-6Al-4V合金導骨作用
外文關鍵詞:electrolytic depositionhydroxyapatitetitanium oxideTi-6Al-4V alloyosteoconduction
相關次數:
  • 被引用被引用:9
  • 點閱點閱:325
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的在改善氫氧基磷灰石(HA)在植入合金上之附著力與抗蝕性,電解沉積HA/TiO2複合鍍層於Ti-6Al-4V合金上。分別於四氯化鈦(TiCl4)酒精溶液中,和四水硝酸鈣(Ca(NO3)2‧4H2O)與磷酸二氫銨(NH4H2PO4)的混合水溶液中,以電解沉積方式分別形成氫氧化鈦(TiO(OH)2‧H2O)介面層及氫氧基磷灰石層,再經低溫燒結後形成HA/TiO2複合鍍層。製備後的試片藉由XRD、SEM/EDS分析、循環極化實驗、浸泡實驗、拉伸試驗、細胞培養和器官培養等測試,分析與探討機械性質、抗蝕性與生物活性等特性。由循環極化實驗結果顯示,HA/TiO2複合鍍層之試片較單層HA和TiO2鍍層或基材的抗蝕性較佳。而由拉伸試驗的結果得知,HA鍍層於Ti-6Al-4V合金上的附著力經由TiO2介面層增強可由21.4MPa提昇至33.8MPa。由浸泡實驗顯示,被覆HA/TiO2鍍層與HA鍍層上的生物活性比未被覆HA鍍層較佳,由於較佳之抗蝕性與較佳之生物活性,在老鼠頭蓋骨器官培養中也顯示出HA/TiO2鍍層有最佳的骨引導能力。
The purpose of this study was to improve the adhesion and corrosion resistance of hydroxyapatite(HA) on implant alloys, by electrolytic deposition of HA/TiO2 double layers coatings on Ti-6Al-4V alloys. The alloys were subjected to electrolytic deposition in a TiCl4 alcoholic solution and subsequently in a mixed aqueous solution of Ca(NO3)2‧4H2O and NH4H2PO4 to form TiO(OH)2‧H2O interface layer and hydroxyapatite layer, respectively. Then the substrate was subjected to a low-temperature sintering process and transformed into a HA/TiO2 composite coating. The samples were characterized by XRD, SEM/EDS analysis; dynamic polarization tests; immersion tests; tensile tests; cell culture; and organ culture. The HA/TiO2 coated specimen revealed the better corrosion resistance than the HA and TiO2 coated or the uncoated. The adhesion strength of HA coatings on Ti-6Al-4V alloys were improved by the intermediate TiO2 coating. Also, immersion tests revealed the better bioactivity on HA/TiO2 or HA coated specimens than on the uncoated. Due to the best resistance and best bioactivity, the calvaria organ culture of HA/TiO2 also revealed the best osteoconduction.
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 7
第二章 文獻回顧 8
2-1 生醫材料簡介 8
2-2 生醫陶瓷材料 11
2-2-1 可吸收性生醫陶瓷 11
2-2-2 生物活性生醫陶瓷 12
2-2-3 生物惰性生醫陶瓷 13
2-3 Ti-6Al-4V合金之基本特性 14
2-4 氧化鈦(TiO2)之基本特性 18
2-5 氫氧基磷灰石(HA)之基本特性 19
2-6 磷酸鈣材料(Calcium Phosphate)之基本特性 23
2-7 被覆生醫陶瓷製程技術 27
2-8 電化學技術(Electrochemical Techniques)簡介 31
2-8-1 雙電層(Electrical double layer)原理 32
2-8-2 極化反應(Polarization of Reactions) 32
2-8-3 活性極化(Activation Polarization) 33
2-8-4 濃度極化(Concentration Polarization) 34
2-8-5 電阻極化(Resistance Polarization) 35
2-9 電解沉積氧化鈦(TiO2)之反應機構 36
2-10 電解沉積氫氧基磷灰石(HA)之反應機構 37
第三章 實驗步驟與方法 38
3-1 試片準備與前處理 40
3-2 電解液之配製 41
3-2-1 電解沉積氧化鈦電解液之配製 41
3-2-2 電解沉積氫氧基磷灰石電解液之配製 41
3-3 陰極極化實驗 42
3-4 陰極電解沉積 43
3-4-1 最佳沉積電流 43
3-4-2 最佳沉積時間 43
3-5 陰乾與低溫熱處理 44
3-6 X光繞射分析(X-ray diffraction) 44
3-7 SEM/EDS表面型態分析 46
3-8 電化學循環極化實驗 46
3-9 浸泡實驗(Immersion test) 49
3-10 感應偶合電漿質譜儀(ICP-MS)分析 49
3-11 超音波震盪試驗 50
3-12 拉伸試驗(Tensile test) 50
3-13 細胞培養(cell culture) 52
3-13-1 細胞繼代培養 53
3-13-2 細胞計數 53
3-13-3 細胞固定 53
3-14 器官培養(organ culture) 54
第四章 結果與討論 56
4-1 陰極極化實驗 56
4-1-1 氯化鈦溶液之陰極極化實驗 56
4-1-2 磷酸鈣溶液之陰極極化實驗 61
4-2 電解沉積製程參數探討 66
4-2-1 製程參數對單層TiO2鍍層之影響 66
4-2-2 製程參數對單層HA鍍層之影響 69
4-2-3 製程參數對複合HA/TiO2鍍層之影響 73
4-3 陰乾與熱處理 75
4-4 X光繞射分析 77
4-4-1 Ti-6Al-4V基材經不同溫度熱處理 77
4-4-2 單層TiO2鍍層經不同溫度熱處理 80
4-4-3 單層HA鍍層經不同溫度熱處理 80
4-4-4 複合HA/TiO2鍍層經不同溫度熱處理 81
4-5 電化學循環極化實驗 87
4-6 附著力試驗 97
4-6-1 超音波震盪試驗 97
4-6-2 拉伸試驗 103
4-7 浸泡實驗 106
4-8 細胞培養 114
4-8-1 培養皿上細胞附著型態 114
4-8-2 空白基材上細胞附著型態 114
4-8-3 單層TiO2鍍層上細胞附著型態 115
4-8-4 單層HA鍍層上細胞附著型態 115
4-8-5 複合HA/TiO2鍍層上細胞附著型態 115
4-9 器官培養 118
4-9-1 器官培養實驗7天 119
4-9-2 器官培養實驗14天 119
4-9-3 器官培養實驗21天 119
4-9-4 器官培養實驗28天 120
第五章 結論 123
參考文獻 125
[1] Wei-Ming Chen, James P. McAuley, C. Anderson Engh, JR., Robert H. Hopper, JR., Charles A. Engh, “Extended Slide Trochanteric Osteotomy for Revision Total Hip Arthroplasty.”, The Journal of Bone and Joint Surgery, 82-A(2), P.1215-1219 (2000)
[2] Tain-Hsiung Chen, Chia-Jui Su, Ching-Kuei Huang, Wei-Ming Chen, Wai-Hee Lo., “Revision Total Hip Arthropasty with Severe Osteolysis Using A.M.L. Prostheses.” J. Orthop surg 14, P.102-107 (1997)
[3] S. A. Brown, “In vitro and in vivo metal ion release,” J. of Biomed. Mater. Res., 22, P.321-338 (1988)
[4] J.M. Haguenoer and D. Furon, “Toxicologie et Hygiene Industrielle, Les Derives Mineraux,” Technique et Documentation, paris
[5] E. Merian, “Metalle in der Umwelt: Verteilung, Analytik and biologische Relevanz,” Verlag Chemie, Weinheim.
[6] I. G. Macara “Vanadium, an element in search of a role,” Trends Biochem. Sci., 5, P.92-95 (1980)
[7] T. Stenberg, “Release of cobalt from cobalt-chromium alloy constructions”, Scandinaviam Journal of Dental Research, 90 (1982)
[8] H. S. Dobbs and M. J. Minski, “Metal ion release after total hip replacement” Biomaterials, 1, P.193-198 (1980)
[9] C. M. sharkness and M.J. Minski, “Metallic orthopedic implants and their possible association with cancer” J. Long-Term Eff. Med. Implant, 3, P.237-249 (1993)
[10] P. R. Bouchard, B. Jonathan, B. A. Albrecht, R. E. Kaderly, J. O. Galante, and B. u. pauli, “Carcinogenicity of CoCrMo (F-75) implants in the rat,” J. Biomed. Mater. Res., 32, P. 37-44 (1996)
[11] J. L. Johnson, H. P. Jones and K. V. Rajagopalan, Journal of Biological Chemistry, 252, P.4994-5003 (1997)
[12] T. A. Gruen, G. M. McNeice, H. C. Amstutz, “Mode of Failure of cemented stem-type femoral component”, Clin. Orthop., 141, P.17-21 (1979)
[13] R. Huiskes, “The various stress patterns of press-fit, Ingrowth, and Cemented Femoral stems”, Clin. Orthop., 261, P.27-38, (1990)
[14] Adell R, Lekholm U, Rockler B, Branemark PI. “A 15-year study of osseointegrated implants in the treatment of the edentulous jaw” Int J Oral Surg, P.387—461 (1981)
[15] B. M. Wroblewski, “15-21-year results of Charnely Low Friction Arthroplasty”, Clin Orthop, 211, P.30-35 (1986)
[16] L. L. Hench., “Bonding mechanism at the interface of ceramic prosthetic materials”, J. Biomed, Mater. Res., Symposium 2, P.117-141 (1971)
[17] Kim, Hae-Won., “Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer”, Biomaterials, 24, P.3277-3284 (2003)
[18] Leonor, I.B., “In vitro bioactivity of starch thermoplastic /hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy”, Biomaterials, 24, P.579-585 (2003)
[19] Kim, Hae-Won., “Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol—gel method”, Biomaterials, 25, P.2533-2538 (2004)
[20] Manso, M., “Surface and interface analysis of hydroxyapatite/TiO2 biocompatible structures”, Materials Science and Engineering: C, 23, P.451-454 (2003)
[21] Li, H., “Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings”, Biomaterials, 24, P.949-957 (2003)
[22] Roop Kumar, R., “Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system”, Materials Letters, 55, P.133-137 (2002)
[23] Kim, Hae-Won., “Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol—gel method”, Biomaterials, 25, P.2533-2538 (2004)
[24] Habazaki, H., “Crystallization of anodic titania on titanium and its alloys”, Corrosion Science, 45, P.2063-2073 (2003)
[25] Huang, Nan; Yang, Ping., “Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition, 9, P.771-776 (1998)
[26] N. Huang, Y. R. Chen J. M. Luo, “In vitro investigation of blood compatibility of Ti with oxide layers of rutile structure”, J. of Biomaterials Applications, 8, P.404-412 (1994)
[27] T. Sonoda M. Kato, “Topographic fidelity of Ti-O film deposited onto Ti-6Al-4V alloy substrate to its surface by reactive DC sputtering”, Material Research Bulletin, 32, P.1419-1426 (1997)
[28] Yu-Peng Lu, “Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate”, Biomaterials, 25, P. 4393-4403 (2004)
[29] Inagaki, M.; Yokogawa, Y.; Kameyama, T., “Bond strength improvement of hydroxyapatite/titanium composite coating by partial nitriding during RF-thermal plasma spraying”, Surface and Coatings Technology, 173, P.1-8 (2003)
[30] Jae-Man Choi, Hyoun-Ee Kim and In-Seop Lee, “Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate”, Biomaterials, 21, P. 469-473 (2000)
[31] Hae-Won Kim, “Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol—gel method”, Biomaterials, 25, P. 2533-2538 (2004)
[32] Kokubo, Tadashi., “Apatite formation on surfaces of ceramics, metals and polymers in body environment”, 46, P. 2519-2527 (1998)
[33] Aldo R. Boccaccini and Igor Zhitomirsky, “Application of electrophoretic and electrolytic deposition techniques in ceramics processing”, Current Opinion in Solid State and Materials Science, 6, P.251-260 (2002)
[34] I. Zhitomirsky, “Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects”, Advances in Colloid and Interface Science, 97, P.277-315, (2002)
[35] I. Zhitomirsky and A. Petric, “Cathodic electrodeposition of polymer films and organoceramic films”, Materials Science and Engineering B, 78, P. 125-130 (2000)
[36] S. K. Yen and C. M. Lin, “Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium”, Materials Chemistry and Physics, Volume, 77, P.70-76 (2003)
[37] M. C. Kuo and S. K. Yen, “The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature”, Materials Science and Engineering: C, 20, P.153-160 (2002)
[38] 林奇民, “電解沉積AI2O3-HA生醫陶瓷於純鈦金屬上之研究”, 國立中興大學 材料工程學系研究所碩士論文 (2000)
[39] 林素苹, “The Study of Electrolytic Deposition ZrO2/HA Bioceramic Coatings on Ti-6Al-4V Aalloy”, 國立中興大學 材料工程學系研究所碩士論文 (2001)
[40] 林昇霈, “電解沉積式樣化ZrO2/HA生醫陶瓷於Ti-6Al-4V合金上之研究” 國立中興大學 材料工程學系研究所碩士論文 (2002)
[41] 陳詩惠, “電解沉積HA/ZrO2生醫陶瓷鍍層於Co-Cr-Mo合金上之研究”, 國立中興大學 材料工程學系研究所碩士論文 (2002)
[42] 向西蘭, “電解沉積HA/ZrO2生醫陶瓷鍍層於純鈦上之研究” 國立中興大學 材料工程學系研究所碩士論文 (2003)
[43] 李世昌, “ Electrolytic HA/TiO2 Bioceramic Coatings on Co-Cr-Mo Alloy”, 國立中興大學 材料工程學系研究所碩士論文 (2003)
[44] ASTM F-136, “Standard Specification for Wrought Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications”, Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01
[45] Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th Annnal Intermalionel Biomaterial Symposium, April 20-24 (1974)
[46] The Consensus Conference of the European Society for Biomaterials, Chester, England, March 1986
[47] Joon B. Park and Roderic S. Lakes, “Biomaterials , an introduction”, Plenum Press, New York, (1992)
[48] G. K. Mckee, “Total hip replacement past present and future”, Biomaterial. 13, July 1982
[49] ASTM F-138, “Standard Specification for Wrought 18 Chromium-14 Nickel-2.5 Molybdenum Stainless Steel Bar and Wire for Surgical Implants”, Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01
[50] ASTM F-90, “Standard Specification for Wrought Cobalt-20 Chromium-15 Tungsten-10 Nickel Alloy for Surgical Implant Applications”, Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01
[51] ASTM F-67, “Standard Specification for Unalloyed Titanium for Surgical Implant Applications”, Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01
[52] Joseph D. Bronzino, “The biomedical engineering handbook”, Boca Raton, FL, CRC Press (2000)
[53] James F. Shackelford., “Bioceramics”, Amsterdam, Gordon and Breach Science (1999)
[54] A. Ravaglioli and A. Krajewski., “Bioceramics and the human body”, London, Elsevier Applied Science (1992)
[55] A. Ravaglioli, A. Krajewski ; with a foreword by Samuel F. Hulbert., “Bioceramics, materials, properties, applications”, London, Chapman & Hall (1992)
[56] Takao Yamamuro, Larry L. Hench, June Wilson. “CRC handbook of bioactive ceramics”, Boca Raton, Fla., CRC Press (1990)
[57] Hench, L.L. “Bioactive Ceramics,” in Ducheyne, Lemons, P.; Lemons, J. Eds. Bioceramics: Material Characteristics Versus In Vivo Behavior. New York Academy of Sciences (1990)
[58] Hench, L.L. “Bioceramics and the Origins of Life,” in Oonishi, H. Ed Bioceramics: Proceedings of the First International Bioceramic Symposium. Ishyaku EuroAmerica., P. 5-11 (1990)
[59] Howden, A. "Tissue reaction to the Bioceramic Synthos," in Hastings, G. Ed.. Mechanical Properties of Biomaterials. John Wiley and Sons., P. 445-456 (1980)
[60] L. L. Hench and E. C. Ethridge, “Biomaterials: An Interfacial Approach”, Academic Press, New York (1982)
[61] J. D. Preston, “Properties in Dental Ceramics”; in Proceedings of the IV Int. Symp. on Dental Materials, Quintessa Pub. Co., Chicago (1988)
[62] W. Cao and L. L. Hench, “Bioactive Materials,” Ceram. Int., 22, P.493-507 (1996)
[63] L. L. Hench, R.J. Splinter, W. C. Allen, and T. K. Greenlee, “Bonding Mechanism at the Interface of Ceramic Prosthetic Materials.”, J. Biomed., Mater. Res., 2, P.117-41 (1972)
[64] Soltesz., Ceramics in Composites, Bioceramics: Material Characteristics Versus in Vivo Behavior, Ed. P. Ducheyne and J. Lemons, New York Academy of Sciences, P. 137-155 (1988)
[65] James Moore, George Zouridakis., “Biomedical technology and devices handbook”, Boca Raton, CRC Press (2004)
[66] Jan Eirik Ellingsen, S. Petter Lyngstadaas., “Bio-implant interface, improving biomaterials and tissue reactions”, CRC Press, Boca Raton, Fla (2003)
[67] William D. Callister, Jr., “Materials science and engineering, an introduction”, New York, Wiley, (2000)
[68] B. F. Kavanagh, D. M. Ilstrup, R. H. Jr. Fitzgerald, “Revision total hip arthor plasty”, J. Bone Joint Surg., 67A, P.517-526 (1986)
[69] E. P. lautenschlager and P. Monaghan, “Titanium and Titanium Alloy as Dental Materials”, Internat. Dent., 43, P.245-253 (1993)
[70] J. B. Park, “Biomaterials Science and Engineering”, Plenum Press, New York and London (1985)
[71] P. Griss and G. heimke, “Five year experience with ceramic-metal composite hip endoprostheses. 1. Clinical evaluation”, Arch. Orthop. Traumat. Surg., 98, P.157-171 (1981)
[72] Jonathan Black, “Biological performance of materials”, Marcel Dekker, New York, (1999) P.13-25
[73] J. Ma. Rincon, M. Romero, “Characterization techniques of glasses and ceramics”, New York, (1999)
[74] L. Jianguo, “Behavior of titanium and titania-based ceramics in virto and in vivo”, biomaterials, 14, P.229-232 (1993)
[75] Tetsuya Jinno, Sarah K., “Effects of calcium ion implantation on osseointegration of surface-blasted titanium alloy femoral implants in a canine total hip arthroplasty model”, The Journal of Arthroplasty, 19, P.102-109 (2004)
[76] Sergey V. Dorozhkin & Matthisa Epple, “Biological and medical significance of calcium phosphates.”, Angew. Chem. Int. Ed., 41, 3130-3146 (2002)
[77] Q. Liu, J. R. de Wijn, C. A. van Blitterswijk. A study on the grafting reaction of isocyanates with hydroxyapatite particles. J. Biomed.Mater. Res., 40, P.358-364. (1998)
[78] A. S. Dosner, A. Perloff, “Refinement of The Hydroxyapatite”, Acta. Cryst., 11, P.308-314 (1985)
[79] Hae-Won Kim, Young-Hag Koh, “Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol—gel method”, Biomaterials, 25, P.2533-2538 (2004)
[80] Lu, Yu-Peng; Li, Mu-Sen, Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate, Biomaterials, 25, P. 4393-4403 (2004)
[81] H. Newesely, “High temperature behavior of hydroxyl-and fluorapatite”, J. Oral. Rehab., 4, P.97-101 (1997)
[82] Boyde, A.; Corsi, A., “Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism”, Bone, 24, P.579-589 (1999)
[83] 董國忠, “A Study of Immobilization of Bone Growth Factor on Calcium Phosphate Bioceramics as a Viable Bone Substitute”, 私立中原大學化學系博士論文 (2002)
[84] Q. Liu, J. R. de Wijn, C. A. van Blitterswijk., “A study on the grafting reaction of isocyanates with hydroxyapatite particles. J. Biomed.” Mater. Res., 40, P.358-364 (1998)
[85] L. Montastruc., “A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor”, Chemical Engineering Journal, 94, P.41—50 (2003)
[86] Bohner, M.; Theiss, F., “Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep”, Biomaterials, 24, P. 3463-3474 (2003)
[87] Stephan Graham and Paul W. Brown, “Reactions of octacalcium phosphate to form hydroxyapatite”, Journal of Crystal Growth, 165, P. 106-115 (1996)
[88] A. Destainville, E. Champion, D., “Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate”, Materials Chemistry and Physics, 80, P.269-277 (2003)
[89] S. Raynaud, E. Champion, D, “Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders”, Biomaterials, 23, P.1065-1072 (2002)
[90] V. V. Silva and F. S. Lameiras, “Synthesis and characterization of composite powders of partially stabilized zirconia and hydroxyapatite”, Materials Characterization, 45, P.51-59 (2000)
[91] E. J. Blom, J. Klein-Nulend, “Transforming growth factor-1 incorporation in an -tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties”, Biomaterials, 23, P.1261-1268 (2002)
[92] Y. Sargin, M. Kizilyalli, C., “A new method for the solid-state synthesis of tetracalcium phosphate, a dental cement: X-ray powder diffraction and IR studies”, Journal of the European Ceramic Society, 17, P.963-970 (1997)
[93] F. Löffler., “Functional metal-based coatings on ceramic substrates”, Surface and Coatings Technology, 132, P. 222-227 (2000)
[94] A. Lahmar, T. P. Nguyen, D., “Experimental investigation on the thermal contact resistance between gold coating and ceramic substrates”, Thin Solid Films, 398, P. 167-172 (2001)
[95] C. Vitale Brovarone, E., “Graded coatings on ceramic substrates for biomedical applications”, Journal of the European Ceramic Society, 21, P. 2855-2862 (2001)
[96] P. Torricelli, E. Verné, C, “Biological glass coating on ceramic materials: : in vitro evaluation using primary osteoblast cultures from healthy and osteopenic rat bone”, Biomaterials, 22, P. 2535-2543 (2001)
[97] B. Wang, Z. Ji, G. M. Janowski, “A technique for sputter coating of ceramic reinforcement particles”, Surface and Coatings Technology, 91, P.64-68 (1997)
[98] Allen J. Bard, Larry R. Faulkner., “Electrochemical methods, fundamentals and applications”, New York, Wiley (2001)
[99] Olof Forsen., “Electrochemical methods in corrosion research”, Switzerland, Trans Tech (1992)
[100] Robert G. Kelly, “Electrochemical techniques in corrosion science and engineering”, New York, Marcel Dekke (2003)
[101] 吳浩青,李永舫, “電化學動力學”, 臺北市, 科技 (2001)
[102] 田福助, “電化學 理論與應用”, 臺北巿, 高立出版 (1993)
[103] 林奇民,顏秀崗, “Investigation of different Titanium surface treatments on in vitro osteoblast-like cell”, 中國材料科學學會, 2002年材料年會論文集 (2002)
[104] I. Zhitomirsky, “Cathodic electrosynthesis of titanium and ruthenium oxides”, Materials Letters, 33, P.305-310 (1998)
[105] I. Zhitomirsky, “Cathodic electrosynthesis of titania films and powders”, Nanostructured Materials, 8, P. 521-528 (1997)
[106] J. H. Chern Lin, H. J. Lin, S. J. Ding and C. P. Ju, “Characterization of immersed hydroxyapatite-bioactive glass coatings in Hank’s solution”, Materials Chemistry and Physics, 64, P.229-240 (2000)
[107] A. Boyde, A. Corsi, R. Quarto, R. Cancedda, and P. Bianco, “Osteoconduction in Large Macroporous Hydroxyapatite Ceramic Implants: Evidence for a Complementary Integration and Disintegration Mechanism”, Bone, 24, P.579-589 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔