跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白士峰
研究生(外文):Shih-feng Pai
論文名稱:以高密度電漿研製藍寶石晶圓微形圖案之特性研究
論文名稱(外文):Fabrication of Patterned Sapphire Substrates by High-Density-Plasma Etching
指導教授:武東星
指導教授(外文):Dong-sing Wuu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:藍寶石感應耦合式電漿蝕刻速率蝕刻角度
外文關鍵詞:sapphireinductively coupled plasma (ICP)etch rateetch profile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Ⅲ-Ⅴ族化合物半導體是目前於光電元件上相當有潛力的材料,如氮化鎵寬能隙半導體材料於短波長發光二極體與雷射二極體應用上更是不可或缺的。在發光二極體的磊晶製程中,貫穿式差排是最常見的缺陷,差排缺陷的存在使得載子結合不以發光型態釋出能量,大部分以熱能釋出,造成非輻射再結合效應,減少發光效率。所以如何減少貫穿式差排便是努力的方向,其中一種技術,是將藍寶石先蝕刻出圖案再去磊晶做成元件,此種方法所做出來的元件能減少貫穿式差排的產生,進而提高元件的發光效率,因此藍寶石基板圖案化也變得更為重要。
本論文係探討使用感應耦合式高密度電漿(ICP)蝕刻藍寶石基板,以其蝕刻出微形圖案之藍寶石晶圓,當改變腔體壓力、ICP 功率、下電極射頻功率以及氣體流量比例、不同的遮罩等參數,探討如何改變電漿特性以得到最佳蝕刻的效果。對於其電漿蝕刻的特性,我們使用掃描式電子顯微鏡來求其蝕刻的角度,使用原子力顯微鏡來量測其表面的粗糙度,對於不同的遮罩,我們增大BCl3在BCl3/Cl2混合氣中所佔的比例來提高其遮罩的選擇比,並且減小工作壓力來增加其蝕刻速率。由實驗中,蝕刻參數對於其蝕刻速率改變,其蝕刻速率由35 nm/min增加到280 nm/min,其粗糙度的變化量從0.2 nm到1.9 nm,其角度的變化更是從60°變化至79°,而在不同的遮罩實驗中,在我們的實驗範圍內,證明了Ni的蝕刻選擇比最好,而且,從以SiO2當遮罩的實驗中,我們可以衍生出其他不同的蝕刻角度,其角度可以從24°變化至35°,因此,對於我們所希望的圖案各種傾斜角度,可以利用遮罩的轉移方式,來蝕刻出我們所理想的角度、蝕刻速率與粗糙度等。

III-nitride compound semiconductors are recognized to be the key materials for optoelectronic devices, such as short-wavelength light-emitting diodes (LEDs) and laser diodes. In the conventional epitaxial process for GaN LEDs, threading dislocations are the most common defects, which make the carrier releasing energy without luminescence as a result of nonradiative recombination effect. The reduction of threading dislocations is very important if one wants to fabricate high-efficiency GaN LEDs. Recently, the patterned sapphire substrate was confirmed to be an efficient method to reduce the threading dislocations and to enhance the scattering the emission light from the active layer. Thus the external quantum efficiency of the GaN LED was improved.
In this thesis, the pattern etching process for the sapphire wafer by an inductively-coupled-plasma (ICP) etcher was described. The etch characteristics were investigated by varying the etching parameters, such as gas combination of Cl2/BCl3/Ar, chamber pressure, ICP power, and DC-bias voltage. The increase of BCl3 content (up to 66.7%) in the Cl2/BCl3 gas mixture increases the etch rate and improves the etch selectivity over Ni. In our experiments, the etch rate of sapphire can increase from 35 to 280 nm/min with a surface roughness from 0.2 to 1.9 nm, and the etch profile from 60 to 79°. The etch selectivity over Ni can reach above 6 which is higher than the other mask materials (SiO2 or Cu). However, the SiO2 mask can offer the lower taper angle from 24 to 35° after ICP etching due to the faster etch rate of the SiO2 side wall. Thus one can utilize a suitable mask material to achieve the etching rate, taper angle, and roughness which are desirable for patterned sapphire substrates.

封面內頁
簽名頁
授權書
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅷ
表目錄 Ⅹ
第一章 緒論
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 7
第二章 蝕刻原理 10
2.1電漿原理 10
2.1.1 電漿的定義 10
2.1.2 電漿的產生 10
2.1.3 碰撞原理 11
2.1.4 電漿的反應 12
2.1.5 電漿的蝕刻 14
2.2蝕刻的設計 16
2.2.1 溼式蝕刻 16
2.2.2 乾式蝕刻 17
2.3電漿蝕刻參數的影響 19
2.3.1 氣體比例 19
2.3.2 腔體壓力 19
2.3.3 ICP功率 20
2.3.4 下電極射頻功率 20
第三章 實驗流程與儀器設備 21
3.1實驗儀器 21
3.1.1 電漿輔助化學氣相沉積 21
3.1.2 電鍍銅 21
3.1.3 電鍍鎳 22
3.1.4 感應式耦合電漿源(ICP) 23
3.2 量測儀器 24
3.2.1 原子力顯微鏡(AFM) 24
3.2.2 場發射掃描式電子顯微鏡(SEM) 26
3.2.3 α-step薄膜測厚儀 27
3.3實驗步驟 28
3.3.1試片準備 28
3.3.2蝕刻步驟 29
3.3.3量測步驟 30
第四章 實驗結果與討論 32
4.1 Cl2/BCl3的氣體比例影響 32
4.1.1 Cl2/BCl3變化量對蝕刻速率與粗糙度的影響 32
4.1.2 Cl2/BCl3變化量對不同遮罩選擇比的影響 33
4.1.3 Cl2/BCl3變化量對於蝕刻角度的影響 34
4.2腔體工作壓力的影響 34
4.2.1工作壓力對蝕刻速率與粗糙度的影響 34
4.2.2工作壓力對不同遮罩選擇比的影響 35
4.2.3工作壓力對蝕刻角度的影響 36
4.3 ICP 功率的影響 36
4.3.1 ICP功率對蝕刻速率與粗糙度的影響 36
4.3.2 ICP功率對蝕刻角度的影響 36
4.4 DC偏壓的影響 37
4.4.1 DC偏壓對蝕刻速率與粗糙度的影響 37
4.4.2 DC偏壓對蝕刻角度的影響 37
4.5 加入Ar的影響 38
4.5.1 加入Ar對蝕刻速率與粗糙度的影響 38
4.5.2 加入Ar對蝕刻角度的影響 38
4.6 不同遮罩的結果 39
4.7 ICP功率與DC偏壓的比較 40
第五章 結論 42
參 考 文 獻 73

[1] 汪建明,”陶瓷技術手冊 (下)” ,經濟部技術發行, (1994).
[2] W.S. Wong, T. Sands, “Optical Absorption Edge Characteristics of Cubic Boron Nitride Thin Films” Appl. Phys. Lett. 75 (1999) 10.
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M.Sano, and K. Chocho, “InGaN/GaN/AlGaN-based Laser Diodes with Modulation-doped Strained-layer Superlattices Grown on an Epitaxially Laterally Overgrown GaN Substrate”, Appl. Phys. Lett. 72 (1998) 211.
[4] J. Han, M.H. Crawford, R.J. Shul, J.J. Figiel, M. Banas, L. Zhang, Y.K. Song, H. Zhou, and A.V. Nurmikko, “AlGaN/GaN Quantum Well Ultraviolet Light Emitting Diodes”, Appl. Phys. Lett. 73 (1998) 1688.
[5] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S. Shur, “High-temperature performance of AlGaN/GaN HFET’s on SiC Substrates”, IEEE Electron Device Lett. 18 (1997) 492.
[6] 史光國,”現代半導體發光及雷射二極體材料技術”, 全華科技圖書股份有限公司發行, (2001).
[7] C.H. Jeong, D.W. Kim, H.Y. Lee, H.S. Kim, Y.J. Sung, G.Y. Yeom, “Sapphire Etching with BCl3/HBr/Ar Plasma”, Surf. Coat. Technol. 171 (2003) 280.
[8] C.H. Jeong, D.W. Kim, J.W. Bae, Y.J. Sung, J.S. Kwak, Y.J. Park, “Dry Etching of Sapphire Substrate for Device Separation in Chlorine-based Inductively Coupled Plasmas”, Mater. Sci. Eng. 93 (2002) 60.
[9] Y.J. Sung, H.S. Kim, Y.H. Lee, J.W. Lee, S.H. Chae, Y.J. Park, G.Y. Yeom, “High Rate Etching of Sapphire Wafer Using Cl2/BCl3/Ar Inductively Coupled Plasmas”, Mater. Sci. Eng. 82 (2001) 50.
[10] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, T. Mukai, Jpn. J. “InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode”, Appl. Phys. 41 (2002) 1431.
[11] K . Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. 41 (2002) 583.
[12] Y.P. Hsu, S.J. Chang, Y.K. Su, J.K. Sheu, C.T. Lee, T.C. Wen, L.W. Wu, C.H. Kuo, C.S. Chang, S.C. Shei, “Lateral Epitaxial Patterned Sapphire InGaN/GaN MQW LEDs”, J. Cryst. Growth 261 (2004) 466
[13] C.H. Jeong, D.W. Kim, K.N. Kim, G.Y. Yeom, “A Study of Sapphire Etching Characteristics Using BCl3-based Inductively Coupled Plasmas”, Jpn. J. Appl. Phys. 41 (2002) 6206
[14] S. D. Lester, F. A. Ponce, M. G. Craford and D. A. Steigerwald, “High Dislocation Densities in High Efficiency GaN-based Light-Emitting Diodes”, Appl. Phys. Lett. 66 (1995) 1249.
[15] S. Nakamura, M. Senoh, S. Nagahata, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, “InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices”, Jpn. J. Appl. Phys. 36 (1997) 1568.
[16] S.J. Chang, Y.C. Lin, Y.K. Su, C.S. Chang, T.C. Wen, S.C. Shei, J.C. Ke, C.W. Kuo, S.C. Chen, S.C. Liu, Solid-State Electron. 47 (2003) 1539.
[17] 許健興, 私立逢甲大學碩士論文(2003).
[18] 羅正忠, 張鼎張, “半導體製程技術導論”, 台灣培生教育出版有限公司(2002) .
[19] 施敏(原著), 黃調元譯, “半導體元件物理與製作技術”, 交大出版社(2002).
[20] P.E. Riley, S.S. Peng, “Plasma Etching of Aluminum for ULSI Circuits”, Solid-State Technol. 47 (1993) 1124.
[21] S.k. Ghandhi, VLSI Fabrication Principles, John Wiley & Sons (1994).
[22] S. J. Peartona, J. C. Zolper, R. J. Shul, and F. RenJ, “GaN: Processing, defects, and Devices”, J. Appl. Phys. 86 (1999) 1.
[23] H.S. Kim, G.Y. Yeom, J.W. Lee, and T.I. Kim, “A Study of GaN Etch Mechanisms Using Inductively Coupled Cl2/Ar Plasmas”, Thin Solid Films 341 (1999) 180.
[24] H.S. Kim, G.Y. Yeom, J.W. Lee and T.I. Kim, “Characteristics of Inductively Couple Cl2/BCl3 Plasma during GaN Etching”, J. Vac. Sci. Technol. 17 (1999) 4.
[25] 洪建中, 國立中興大學碩士論文(2002).
[26] 莊達人,“VLSI 製造技術”,高立圖書有限公司, 5th(2001).
[27] 王大倫譯, “實用電鍍學”, 徐氏基金會出版(1997).
[28] L.E. Samuels, “Metallographic Polishing by Mechanical M”, 3rd Edition.
[29] X. Dongzhu, Z Dezhang, P. Haochang, X. Hochang, X. Hongjie, R. Zongxin, “Generation of Phonons in High-Power Ferromagnetic Resonance Experiments”, J. Phys. Appl. Phys. 31 (1998) 1647.
[30] J.W. Kim, Y.C. Kim, W.J. Lee, “Reactive Ion Etching Mechanism of Plasma Enhanced Chemically Vapor Deposited Aluminum Oxide Film in CF4/O2 Plasma”, J. Appl. Phys. 78 (1995) 2045.
[31] E. Kandler, G. Grabhoff, and K. Drescher, “Characterization of Plasma in an Inductively Coupled High-Dense Plasma Source”, Surf. Coat. Technol. 74 (1995) 539.
[32] M.A. Lieberman, and A.J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing”, John Wiley & Sons Inc, (1994).
[33] 張勁燕著, “半導體製程設備” ,五南圖書出版有限公司,(2000).
[34] 汪建民, “材料分析”, 中國材料科學學會(2001)
[35] Y.H. Lee, H.S. Kim, and G.Y. Yoem, “ Etch Characteristics of GaN Using Inductively Coupled Cl2/Ar and Cl2/BCl3 Plasmas”, J. Vac. Sci. Technol. 16 (1998) 1478.
[36] J. Etrillard, F. Heliot, P. Ossart, M. Juhel, and G. Patriarche, “Sidewall and Surface Induced Damage Comparison between Reactive Ion Etching and Inductive Plasma Etching of InP Using a CH4/H2/O2 Gas Mixture”, J. Vac. Sci. Technol. 14 (1996) 1056.
[37] T. Maeda, J.W. Lee, R.J. Shul, J. Han, J. Hong, E.S. Lambers, S.J. Pearton, C.R. Abernathy, and W.S. Hobson, Appl. Sur. Sci. 143 (1999) 174.
[38] R.J. Shul, G.B. McClellan, S.A. Casalnuovo, D.J. Rieger, S.J. Pearton, C. Constantine, C. Barratt, R.F. Karlicek, Jr., C. Tran, and M. Schruman, “Inductively Couple Plasma Etching of GaN” , Appl. Phys. Lett. 8 (1996) 69.
[39] S.A. Smith, C.A. Wolden, M.D. Bremser, A.D. Hanser, R.F. Davis, and W.A. Lampert, “High Rate and Selective Etching of GaN, AlGaN, AlN Using an Inductively Coupled Plasma”, Appl. Phys. Lett. 25 (1996) 71.
[40] J. Lee, H. Cho, D.C. Hays, C.R. Abernathy, S.J. Pearton, R.J. Shul, G.A. Vawter, and J. Han, “Dry Etching of GaN and Related Materials: Comparison of Techniques”, IEEE 4 (1998) 3.
[41] K. Zhu, V. Kuryatkov, B. Borisov, J. Yun, G. Kipshidze, S.A. Nikishin, and H. Temkin, D. Aurongzeb and M. Holtza, “Evolution of Surface Roughness of AlN and GaN Induced by Inductively Coupled Cl2/Ar Plasma Etching”, J. Appl. Phys. 95 (2004) 9.
[42] 劉銘雄, 國立台灣海洋大學碩士論文(2000)
[43] 黃照昌, 國立台灣海洋大學碩士論文(2001)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top