(3.238.174.50) 您好!臺灣時間:2021/04/20 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林彥文
研究生(外文):Yen-Wen Lin
論文名稱:聚苯胺/奈米碳管導電複合材料之製備與電性研究
論文名稱(外文):Preparation and Characterization of Polyaniline / Carbon Nanotubes composites
指導教授:吳宗明吳宗明引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:聚苯胺奈米碳管複合材料
外文關鍵詞:polyanilinecarbon nanotubecomposite
相關次數:
  • 被引用被引用:26
  • 點閱點閱:768
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:151
  • 收藏至我的研究室書目清單書目收藏:2
摘要
本質型導電高分子聚苯胺具有高分子質輕、易塑等特性並兼具導電性質,同時其原料取得及合成製備容易,環境穩定性高,並可藉由質子化摻雜效應或適當加工製程增加聚苯胺整體性質,因此聚苯胺是一適當且理想的導電性應用材料。然而聚苯胺導電度相較於其他導電高分子並不突出,限制了其應用範圍,因此本研究以原位聚合法將聚苯胺與高導電性的奈米碳管和奈米級碳黑相混形成奈米複合材料,期望能發揮各成分的優點,進而提升聚苯胺之導電性質。
奈米碳管擁有高長寬比、高比表面積、高韌性及高導電導熱性等優異性質,使其成為新型複合材料補強材的絕佳候選人,然而奈米碳管易聚集且不溶於水或有機溶劑中,因此研究中利用羧化與醯化程序將羧酸基與醯氯基接枝於奈米碳管表面,可使奈米碳管具備溶解特性。此外將奈米碳管與苯胺單體經加熱迴流程序後,兩者間可形成電荷轉移作用力,也可形成具溶解性之奈米碳管。
將上述改質奈米碳管與苯胺單體進行原位聚合程序,製備而成之聚苯胺/奈米碳管複合材料進行型態分析,結果發現當補強物添加至一定量時(≧ 3wt%),複合物表面形態開始觀察到針狀或松果般層狀的連續管狀或球體複合物,此為聚苯胺包覆於奈米碳管或碳黑表面所形成的“core-shell”結構。此外,當奈米碳管或碳黑未經官能基化程序,複合物易發生奈米碳管或碳黑裸露於聚苯胺結構外的現象,若碳管表面有接枝官能基團,則碳管裸露情形明顯減低。
而複合材料電性量測方面,複合材料導電度曲線大部分呈現“先上升,後下降,再上升”的變化趨勢,此與混合率方程式所預測之結果相似,因此推斷複合材料整體導電性變化趨勢應是複合材料形態轉變所影響。就整體導電度而言,添加碳管對於聚苯胺電性提升的效果為:PCNT<PcCNT<PaCNT,然而於碳管添加量1 wt%時,PfCNT系列之導電度比PCNT、PcCNT與PaCNT等系列為佳。同時研究發現碳黑的添加亦可增進聚苯胺導電性質,然而其添加量卻為奈米碳管的數倍,其原因為奈米碳管為管狀連續結構,當其分佈於聚苯胺中時可扮演起架橋作用,而碳黑為顆粒狀,在聚苯胺中需相當數量才能產生大量的接觸點而形成導電通路。
Abstract
Polyaniline (PANI), one of the intrinsically conducting polymers (ICPs), contains good processability, excellent environmental stability, and reversible control of conductivity both by protonation and by charge-transfer dopping.However, comparing to other ICPs, the conductivity of PANI is not obvious so that its application is limited. In order to promote the conductivity of PANI, the PANI/carbon nanotubes (CNTs) and PANI/carbon black (CB) nanocomposites was prepared by in-situ polymerization.
CNTs has high aspect radio, specific surface area, excellent thermal and electrical conductivity, so it is one of the best choice for reinforcements. However, CNTs is easily congregate and not soluble in water or organic solution.In this study, due to the presence of Van deer Waal force, surface treated CNTs by grafting carboxylic acid and thionyl chloride is prepared to improve the solubility of CNT. The treated CNT were mixed with aniline to form a charge-transfer complex at 80℃. After the mixture of aniline and CNTs was heated at reflex, the aniline and CNTs may form a charge-transfer complex.
The addition of 3wt% CNTs or CB into polyaniline, the morphology of nanocomposites look like a “core-shell ” structure. It is because PANI covers the surface of CNTs or CB. On the other hand, when CNTs or CB are not functionalization, the phenomena was not clear.
Regarding to the measure for the conductivity of nanocomposites, the curve of conductivity is very complicated as the ratio of CNTs increases. The calculated result based on the rule of mixture shows similar tendency and is related to the change of morphology.
The conductivity of nanocomposites are in the order of PCNT<PcCNT<PaCNT. By adding 1wt% CNTs in PfCNT, the conductivity is higher than those observed. In the meanwhile, the study has showed that adding CB also can improve the conductivity of PANI. However, the volume of CB would be several times higher than that of CNTs, due to the continues structure of CNTs.
總目錄
中文摘要………………………………………………………………Ⅰ英文摘要……………………………………….……………………….Ⅲ
致謝……………………………………………………………………..Ⅴ
總目錄…………………………………………………………………..Ⅵ
圖目錄…………………………………………………………………..Ⅷ
表目錄…………………………………………………………………..ⅩⅢ
第一章 緒論…………………………………………………………….1
1-1 前言…………………………………………………………………1
1-2 研究動機與目的……………………………………………………5
1-3 研究方向……………………………………………………………6
第二章 文獻回顧……………………………………………………….7
2-1 導電高分子(conducting polymer)………………………………7
2-1.1 導電高分子的導電機制……………………………………11
2-1.2 導電高分子的類型…………………………………………15
2-2 聚苯胺(polyaniline)…………………………………………….17
2-2.1 聚苯胺之化學合成法………………………………………22
2-2.2 聚苯胺之性質………...…………………………………….25
2-3 奈米碳管(carbon nanotubes)……………………………………30
2-3.1 奈米碳管之特性…………………………………………....33
2-3.2 奈米碳管之官能基化………………………………………36
2-4 聚苯胺-奈米碳管複合材料(polyaniline-carbon nanotubes composite)………………………………………………………..39
2-5 聚苯胺-奈米碳管複合材料之應用………………………………..46
第三章 實驗方法與步驟……………………………………………....49
3-1 實驗材料…………………………………………………………...49
3-2 實驗儀器…………………………………………………………...50
3-3 實驗步驟…………………………………………………………...52
3-3.1 奈米碳管表面官能基化……………………………………52
3-3.1a 羧化奈米碳管………………………………………52
3-3.1b 醯化奈米碳管………………………………………54
3-3.1c 於苯胺單體中加熱迴流之奈米碳管………………56
3-3.2 製備聚苯胺/奈米碳管導電複合材料……………………...57
3-3.3 製備聚苯胺/奈米碳黑導電複合材料……………………...59
3-4 實驗儀器分析……………………………………………………...61
第四章 結果與討論……………………………………………………65
4-1 奈米碳管之官能基化……………………………………………...65
4-1.1 羧化奈米碳管與醯化奈米碳管……………………………65
4-1.2 於苯胺單體中加熱迴流之奈米碳管………………………78
4-2 聚苯胺/奈米碳管導電複合材料…………………………………..80
4-2.1 聚苯胺/多層奈米碳管導電複合材料……………………...80
4-2.2 聚苯胺/羧化奈米碳管導電複合材料……………………...94
4-2.3 聚苯胺/醯化奈米碳管導電複合材料…………………….104
4-2.4 聚苯胺/加熱迴流奈米碳管導電複合材料……………….114
4-3 聚苯胺/奈米碳黑導電複合材料…………………………………122
第五章 結論…………………………………………………………..134
參考文獻………………………………………………………..……..136
參考文獻
1. 王宗雄,塑膠資訊,2001年,54期,37頁
2. J. C. Huang, Adv. Polym. Tech., 2002, 21, 299.
3. I. K. Varma, G. Gupta, C. S. Sidhu, Macromol. Symp., 2001, 164, 401.
4. M. S. Bosnar, M. V. Budimir, S. Kovac, D. Kukulj, L. Duic, J. Polym. Sci. Part A: Polym. Chem., 1992, 30, 1609.
5. D. Hertel, S. Setayesh, H. G. Nothofer, U. Scherf, K. Maullen, H. Bassler, Adv. Mater., 2001, 13, 65.
6. L. Zhai, R. D. McCullough, Adv. Mater., 2002, 14, 901.
7. S. Iijima, Nature, 1991, 354, 56.
8. S. Komarnei, J. Mater. Chem., 1982, 2, 1219.
9. 廖建勛,工業材料,1997年,125期,108頁
10. P. M. Ajayan, Q. Z. Zhou, Top. Appl. Phys., 2001, 80, 391.
11. D.Chapman, R.J. Warm, A.G. Fitzgerald, A.D. Yoffe J. Chem. Soc., Faraday Trans., 1964, 294, 60.
12. H. Shirakawa, S. Ikeda, Polymer, 1971, 2, 231.
13. H. Shirakawa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Hegger J. Chem. Soc., Chem. Commum., 1977, 578.
14. A. Bhattacharga, A. De, S. N. Bhattacharga, Synth. Met., 1994, 65, 35.
15. H. Yamato, W. Wernet, M. Ohwa, B.Rotinger, Synth. Met., 1993, 55, 3550.
16. J. Roncali, J. Chem. Rev., 1992, 92, 711.
17. S. Hotta, M. Soga, N. Sonoda, Synth. Met., 1988, 24, 233.
18. F. Garnier, G. Tourillon, M. Gazard, J. C. Dubois, J. Electroanal. Chem., 1983, 148, 299.
19. B. Wessling, Synth. Met., 1991, 1, 119.
20. G. Harsanyi, Polymer Films in Sensor Applications, 1995, Chap 3, 209.
21. D. M. Mohilner, R. N. Adams, W. J. Argersinger, J. Am. Chem., 1962, 84, 3618.
22. P. J. Nigrey, D.F. Macinnes, J. Electroanal. Chem., 1981, 128, 1651.
23. www.nobel.se/chemistry/laureates/2000/chemadv.pdf
24. W. N. Allen, P. Prant, C. A. Carosella, Synth. Met., 1978, 1, 151.
25. A. G. MacDiarmid, Synth. Met., 1994, 103, 11665.
26. J. L. Bredas, B. Themans, J. M. Andre, R. R. Chance, R. Silbey, Synth. Met., 1984, 9, 265.
27. 陳鴻宇,導電性聚苯胺/磺酸化聚胺酯混合材料之研究,台灣大學化學工程所碩士論文,2001年
28. H. Letheby, J. Chem. Soc., 1862, 15, 161.
29. A. G. Green, A. E. Woodhead, J. Chem. Soc. Trans., 1910, 97, 2388.
30. L. Langer, Solid state Commumication, 1978, 26, 839.
31. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173.
32. Y. Cao, P. Smith, A. J. Hegger, Synth. Met., 1993, 57, 3514.
33. S. P. Armes, J. F. Miller, Synth. Met., 1988, 22, 385.
34. A. G. MacDiarmid, A. J. Epstein, Mater. Res. Soc. Symp. Proc., 1992, 247, 565.
35. J. Stejskal, A. Riede, D. Hlavata, J. Prokes, M. Helmstedt, P. Holler, Synth. Met., 1998, 96, 55.
36. G. Yanhou, L. Ji, Synth. Met., 1998, 96, 1.
37. F. S. Wang, J. S. Tang, L. Wang, H. F. Zhang, Z. Mo, Mol. Cryst. Liq. Cryst., 1988, 160, 175.
38. J. S. Tang, X. B. Jing, B. C. Wang, F. S. Wang, Synth. Met., 1988, 24, 231.
39. A. G. MacDiarmid, A. J. Epstein, Synth. Met., 1995, 69, 85.
40. L. Yang, W. Qiu, Q. Liu, Solid State Ion., 1996, 86, 819.
41. A. A. Syed, M. K. Dinesan, Talanta, 1991, 38, 815.
42. T. Ohsaka, Y. Ohnuki, N. Oyama, G. Katagiri, K. Kamisako, J. Electroanal. Chem., 1984, 161, 399.
43. J. Tang, X. Jing, B. Wang, F. Wang, Synth. Met., 1988, 24, 231.
44. N. Chandrakanthi, M. A. Careem, Polym. Bull., 2000, 44, 101.
45. F. L. Lu, F. Wudl, M. Nowak, A. J. Heeger, J. Am. Chem. Soc., 1986, 108, 8311.
46. S. Stafstrom, J. L. Bredas, A. J. Epstein, H. S. Woo, D. B. Tanner, W. S. Huang, A. G. MacDiarmid, Phys. Rev. Lett., 1987, 59, 1464.
47. J. Y. Shimano, A. G. MacDiarmid, Synth. Met., 2001, 123, 251.
48. 楊岳峰,在孔道均一的模版內合成聚苯胺奈米管,國立中央大學化學工程與材料工程研究所,2003年
49. M. E. Jozefowicz, R. Laversanne, H. H. S. Javadi, A. J. Epstein, J. P. Pouget, X. Tang, A. G. MacDiarmid, Phys. Rev. B, 1989, 39, 12958.
50. C. Liu, J. Zhang, G. Shi, F. Chen, J. Appl. Polym. Sci., 2004, 92, 171.
51. G. Louarn, M. Lapkowski, S. Quillard, A. Pron, J. P. Buisson, S. Lefrant, J. Phys. Chem., 1996, 100, 6998.
52. E. S. Matveeva, R. D. Calleja, V. P. Parkhutik, Synth. Met., 1995, 72, 105.
53. C. H. Chen, J. Appl. Polym. Sci., 2003, 89, 2142.
54. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature, 1985, 318, 162.
55. A. Oberlin, M. Endo, T. Koyama, Carbon, 1976, 14, 133.
56. T. W. Ebbesen, P. M. Ajayan, Nature, 1992, 358,220.
57. S. Iijima, T. Ichihashi, Nature, 1993, 363,603.
58. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 1993, 363,605.
59. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 1996, 381, 678.
60. E. W. Wong, P. E. Sheehan, C. M. Lieber, Science, 1997, 277, 1971.
61. M. F. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, Science, 2000, 287, 637.
62. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys., 1996, 104, 2089.
63. M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, Topics in Current Chemistry, 1998, 199, 1.
64. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B, 1999, 59, 2514.
65. M. A. Osman, D. Srivastava, Nanotechnology, 2001, 12, 21.
66. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett., 1992, 68, 1579.
67. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Rev. Lett., 1992, 60, 2204.
68. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature, 1998, 391, 59.
69. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Nature, 1996, 382, 54.
70. J. E. Fischer, Acc. Chem. Res., 2002, 35, 1079.
71. S. C. Tsang, Y. K. Chen, M. L. H. Green, Nature, 1994, 372, 159.
72. R. M. Lago, S. C. Tsang, M. L. H. Green, J. Chem. Soc., Chem. Commu., 1995, 1355.
73. H. Hiura, T. W. Ebbesen, K. Tanigaki, Adv. Mater., 1995, 7, 275.
74. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science, 1998, 280, 1253.
75. A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, J. G. Chen, J. Am. Chem. Soc., 2001, 123, 10699.
76. A. Kuznetsova, D. B. Mawhinney, V. Naumenko, J. T. Yates, J. Liu, R. E. Smalley, Chem. Phys. Lett., 2000, 321, 292.
77. W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao, Y. P. Sun, Nano Lett., 2002, 2, 231.
78. Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley, J. L. Margrave, Nano Lett., 2002, 2, 1009.
79. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Science, 1998, 282, 95.
80. M. A. Hamon, J. Chen, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Adv. Mater., 1999, 11, 834.
81. U. D. Weglikowska, J. M. Benoit, P. W. Chiu, R. Graupner, S. Lebedkin, S. Roth, Current Applied physics, 2002, 2, 497.
82. V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, A. Hirsch, J. Am. Chem. Soc., 2002, 124, 760.
83. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, J. L. Margrave, J. Phys. Chem. B, 1999, 103, 4318.
84. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, R. C. Haddon, Acc. Chem. Res., 2002, 35, 1105.
85. Y. Sun, S. R. Wilson, D. I. Schuster, J. Am. Chem. Soc., 2001, 123, 5348.
86. P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science, 1994, 265, 1212.
87. A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai, Composites Science and Technology, 2002, 62, 1993.
88. M. S. P. Shaffer, A. H. Windle, Adv. Mater., 1999, 11, 937.
89. B. P. Grady, F. Pompeo, R. L. Shambaugh, D. E. Resasco, J. Phys. Chem. B, 2002, 106, 5852.
90. H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, R. H. Friend, Adv. Mater., 1999, 11, 1281.
91. E. Kymakis, G. A. J. Amaratunga, Appl. Phys. Lett., 2002, 80, 112.
92. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens, Adv. Mater., 1998, 10, 1281.
93. H. Y. Lim, S. K. Jeong, J. S. Suh, E. J. Oh, Y. W. Park, K. S. Ryu, C. H. Yo, Synth. Met., 1995, 70, 1463.
94. M. Li, M. Wan, Solid State Communication, 1995, 93, 681.
95. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez, J. M. Benoit, J. Schreiber, O. Chauvet, Chem. Commun., 2001, 1450.
96. X. H. Li, B. Wu, J. E. Huang, J. Zhang, Z. F. Liu, H. L. Li, Letters to the Editor / Carbon, 2002, 411, 1645.
97. H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith, L. Echegoyen, D. L. Carroll, S. H. Foulger, J. Ballato, Adv. Mater., 2002, 14, 1480.
98. J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A. S. C. Chan, European Polymer Journal, 2002, 38, 2497.
99. W. Feng, X. D. Bai, Y. Q. Lian, J. Liang, X. G. Wang, K. Yoshino, Carbon, 2003, 41, 1551.
100.J. E. Huang, X. H. Li, J. C. Xu, H. L. Li, Carbon, 2003, 41, 2731.
101.Z. Wei, M. Wan, T. Liu, L. Dai, Adv. Mater., 2003, 15, 136.
102.陳岡宏,蒙脫土環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究,國立中央大學化學工程與材料工程所博士論文,2003年
103.T. Makela, S. Pienimaa, T. Taka, S. Jussila, H. Isotalo, Synth. Met., 1997, 85, 1335.
104.R. Racicot, R. Brown, S. C. Yang, Synth. Met., 1997, 85, 1263.
105.P. J. Kinlen, D. C. Silverman, C. R. Jeffreys, Synth. Met., 1997, 85, 1327.
106.C. T. Kuo, W. H. Chiou, Synth. Met., 1997, 88, 23.
107.H. L. Wang, A. G. MacDiarmid, Y. Z. Wang, D. D. Gebler, A. J. Epstein, Synth. Met., 1996, 78, 33.
108.S. A. Chen, K. R. Chuang, C. I. Chao, H. T. Lee, Synth. Met., 1996, 82, 207.
109.C. Li, Z. Song, Synth. Met., 1991, 40, 23.
110.H. Zhang, C. Li, Synth. Met., 1991, 44, 143.
111.M. C. Bernard, A. H. L. Goff, Z. Wen, Synth. Met., 1997, 85, 1347.
112.M. C. Bernard, A. H. L. Goff, V. T. Bich, W. Zeng, Synth. Met., 1996, 81, 215.
113.H. Tsutsumi, S. Yamashita, T. Oishi, Synth. Met., 1997, 85, 1361.
114.G. Kumar, A. Sivashanmugam, N. Muniyandi, S. K. Dhawan, Synth. Met., 1996, 80, 279.
115.Z. Yao, H. W. C. Postama, L. Balents, C. Dekker, Nature, 1998, 402, 273.
116.N. Adamsm, P. J. Laughlin, A. P. Monkman, A. M. Kenwright, polymer, 1996, 37, 3411.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 譚光鼎(1997)。阿美族的教育及其問題之探討。原住民教育季刊,8,1-27。
2. 潘添財(1994)。從原住民文化特色談體育活動之相關發展。中華體育,2,58。
3. 黃明玉(2000)。推展原住民文化與國小體育活動之觀念與看法。學校體育,11(1),21-26。
4. 黃人傑(2000)。台灣原住民的貧窮問題與人文關懷。原住民教育研究,3,1-20。
5. 張駿逸(1997)。民族學觀點的原住民鄉土文化教材。原住民教育季刊,6,1-20。
6. 陳玉枝(1998)。台灣鄉土體育教學─以卑南族傳統樂舞為例。原住民教育季刊,10,65-74。
7. 秦葆琦(1997)。原住民鄉土文化教材之發展與主要內容分析。原住民教育季刊,7,72-78。
8. 翁妙齡(1995)。傳統祭典系列之一:卑南族的猴祭與大獵祭。中央月刊,28(2),87-90。
9. 呂政武(2000b)。從卑南族祭典場域談原住民族體育之推展。學校體育,11(1),15-20。
10. 吳騰達(1997b)。台灣原住民傳統體育活動。國民體育季刊,26(2),4-11。
11. 王清長(2000)。探討現階段推展原住民青少年體育面臨的問題及解決之道。學校體育,11(1),48-50。
12. 王宗吉、黃緯強(2000)。台灣原住民運動的現況與未來。學校體育,11(1),4-7。
13. 王宗吉(民1995)。台灣原住民的傳統遊戲。國民體育季刊,24(3),23-24。
14. 王文娟(1995)。活出祖先的精神:記「下賓朗村」的「猴祭」。光華,20(2),112-123。
 
系統版面圖檔 系統版面圖檔