跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/05 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林奇民
研究生(外文):Chi-Min Lin
論文名稱:電化學陰極合成生醫陶瓷鍍層
論文名稱(外文):Electrochemical Cathodic Synthesis of Bioceramic Coatings on Pure Titanium
指導教授:顏 秀 崗
指導教授(外文):Shiow-Kang Yen
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:186
中文關鍵詞:電化學合成氫氧基磷灰石二氧化鈦磷酸鈣表面型態晶體結構抗蝕性生物活性
外文關鍵詞:Electrochemical SynthesisHydroxyapatiteTitanium DioxideCalcium PhosphateSurface MorphologyCrystal StructureCorrosion ResistanceBioactivity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈦及鈦合金由於具有優秀的抗蝕性、機械性質及生物相容性,因此被廣泛的應用在整形外科及齒科植入材。然而,當鈦及鈦合金長期植入複雜且含侵蝕性體液的人體環境中時,將影響其氧化層的穩定性而加速金屬離子釋出。另外,由於金屬植入材較差的骨整合能力使其與活體骨組織之間易生成纖維包膜而影響其鍵結。由此得知,材料表面若不具提供新生骨生長的條件,將影響其後續與活體骨組織間的鍵結能力。因此,製造一具優秀生物活性、骨整合能力、附著強度及抗蝕性的材料表面將成為一重要的研究重點。
陰極電解沉積陶瓷塗層為一重要的製程技術,此製程具有低成本、低製程溫度及高純度之優點。其能均勻的披覆在鈦、鈦合金及其它應用於骨鍵結的材料。在此研究中電化學合成HA、Al2O3/CaP、TiO2及HA/TiO2等生醫陶瓷鍍層已成功的沉積在純鈦基材上,在改善附著強度方面,由結果得知藉由添加Al2O3及TiO2等第二相提供更穩定的化學鍵結以有效的將HA鍍層之附著強度由11.3 MPa提升致46.7 MPa。由動態循環極化之結果得知,HA/TiO2鍍層在人體模擬體液中具有最佳的抗蝕效果,且經浸泡試驗後發現HA/TiO2鍍層之HA (211) 隨機方向(random orientation) 隨浸泡時間之增長逐漸增強,由增重之結果得知HA/TiO2鍍層之增重量遠大於未處理之鈦基材,此結果表示HA/TiO2鍍層有利於Ca、P離子之吸附與成長,具有較佳的生物活性。由細胞培養之結果得知針狀結構之HA/TiO2鍍層提供較多之表面積更有利於蛋白質及Ca+2, PO4-3離子之吸附,進而有助於骨母細胞之貼附、增殖與分化。由以上結論得知,不同的表面型態、晶體結構、抗蝕性及生物活性之生醫植入材將影響骨母細胞之貼附、增殖及分化。
Titanium and titanium alloys for implants have been widely applied to the orthopaedic and dental fields, due to their excellent corrosion resistance, good mechanical properties and biocompatibility. However, when titanium and titanium alloys are implanted into a complicated and aggressive physiological (in vivo) environment, the oxide stability may be affected, and resulting in increasing metal ion release. In addition, the integration between titanium and tissue is a direct bone contact (morphological connection), not direct chemical bonding. Therefore, fabrication of biomaterials surface properties, which support excellent bioactivity, osteointegration, adhesion strength and corrosion resistance should be one of the key objectives in the design of the next generation of orthopaedic/dental implants.
Cathodic electrolytic deposition is an important method in ceramic processing, which provide low cost, low temperature process and high purity. It can be considered uniform coating on titanium, titanium alloys, and other materials for bone-bonding applications. In this study, electrochemical cathodic synthesis of HA, Al2O3/CaP, TiO2, and HA/TiO2 coatings were successfully deposited on pure titanium substrate. The adhesion strength of electrolytic deposition HA on Ti substrate were dramatically improved by adding the intermediate electrolytic deposition Al2O3 and TiO2 from 11.3 Mpa to 46.7 Mpa. The dynamic cyclic polarization tests in simulated body fluid (SBF) solution revealed that the HA/TiO2 coating was the most corrosion resistant. After immersion tests, HA/TiO2 specimen (002) preferred orientation was gradually replaced by a random orientation where (211) diffraction peak will show the greatest intensity in SBF solution. The weight gains of the HA/TiO2 specimens were more than untreated titanium specimens. This means that the HA/TiO2 coated specimen revealed the more bioactivity than the untreated titanium substrate in SBF solution. From the cell culture results, it was found that HA/TiO2 coated specimen provided with more effective surface area due to the needle-like structure. They will be benefit for the adsorption of Ca+2, PO4-3 and proteins, and hence enhanced the attachment, proliferation and differentiation of osteoblast.
Contents
CHAPTER 1 1
Introduction 1
1.1 Overview 1
1.2 Motivations of the thesis 5
1.3 Objectives of the thesis 6
1.4 Bone graft 7
1.5 Biomaterials 10
1.5.1 Metals 12
1.5.2 Ceramics 13
1.5.3 Polymers 14
1.5.4 Composites 15
1.6 Ceramics as biomaterials 16
1.7 Dental implant 22
1.7.1 Subperiostel implants 24
1.7.2 Endosteal implants 25
1.7.3 Advantages and complications of dental implant 31
1.8 Total hip replacement 34
1.8.1 The cause of hip replacement 36
1.8.2 The possible complication of hip replacement 38
CHAPTER 2 40
Theory 40
2.1 The structure and properties of hydroxyapatite 40
2.2 The structure and properties of titanium dioxide 50
2.3 Electrochemical polarization 54
2.3.1 Activation polarization 55
2.3.2 Concentration polarization 56
2.3.3 Resistance polarization 58
CHAPTER 3 59
Experimental procedures 59
3.1 Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium 59
3.1.1 Sample preparation 59
3.1.2 Polarization tests 59
3.1.3 Electrolytic deposition 61
3.1.4 XRD and SEM 61
3.2 Characterization of electrolytic Al2O3/CaP composite coatings on pure titanium 62
3.2.1 Sample preparation 62
3.2.2 Electrolytic deposition and annealing 62
3.2.3 Scratch tests 62
3.2.4 Polarization and immersion tests 63
3.2.5 SEM and XRD 64
3.3 Characterization of electrolytic TiO2 coating on Ti for biomedical applications 65
3.3.1 Sample preparation 65
3.3.2 Cathodic polarization 65
3.3.3 Electrolytic deposition and annealing 67
3.3.4 XRD and XPS 67
3.3.5 Thermogravimetric and differential thermal analysis (TG/DTA) 67
3.3.6 SEM and AFM 68
3.3.7 Dynamic cyclic polarization 68
3.3.8 immersion tests 69
3.3.9 ICP-AES 69
3.3.10 Cell culture 69
3.3.11 SEM observatios for cell morphology 70
3.3.12 MTT assay 70
3.3.13 Alkaline phosphatase activity 71
3.3.14 Statistical analysis 71
3.4 Characterization of electrolytic HA/TiO2 double layers on Ti for orthopaedic applications 72
3.4.1 Sample preparation 72
3.4.2 Electrolytic deposition and annealing 72
3.4.3 Dynamic cyclic polarization and immersion tests 73
3.4.4 Tensile test and cross-section observations 74
3.4.5 SEM and XRD 76
3.4.6 Cell culture 76
3.4.7 SEM observatios for cell morphology 77
3.4.8 Organ culture of calvalia 77
3.4.9 MTT assay 78
3.4.10 Alkaline phosphatase activity 78
3.4.11 Statistical analysis 78
CHAPTER 4 79
Results and discussion 79
4.1 Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium 79
4.1.1 Polarization tests 79
4.1.2 XRD and SEM 81
4.2 Characterization of electrolytic Al2O3/CaP composite coatings on pure titanium 89
4.2.1 Crystal structures 89
4.2.2 Scratch tests 90
4.2.3 Polarization and Immersion Tests 91
4.2.4 SEM and XRD 92
4.3 Characterization of Electrolytic TiO2 Coating on Ti for Biomedical Applications 109
4.3.1 Cathodic reactions 109
4.3.2 Crystal structures and chemical compositions 111
4.3.3 TG-DTA analysis 112
4.3.4 Surface morphology and film thickness. 114
4.3.5 Corrosion resistance 114
4.3.6 Apatite formation 116
4.3.7 ICP-AES 118
4.3.8 Cell morphology and bioactivity 118
4.4 Characterization of Electrolytic HA/TiO2 Double Layers on Ti for Orthopaedic Applications 143
4.4.1 Crystal Structures and Surface Morphology 143
4.4.2 Corrosion Resistance and Immersion Tests 145
4.4.3 Tensile Tests and Cross-Section Observations 147
4.4.4 Cell Proliferation and Differentiation Assay 149
4.4.5 Cell morphology and organ culture 150
CHAPTER 5 174
Conclusions 174
References 178
Figure contents
Fig. 1 Clinical uses of bioceramics…………………………………………….17
Fig. 2 Bioactive spectrum for various bioceramic implants: (a) relative rate of bioreactivity and (b) time dependence of formation of bone bonding at an implant interface ((A) 45S5 BioglassR [45wt%SiO2 and 5:1 mole ratio of Ca to P], (B) KGS CeravitalR [bioactiv¥e glass-ceramics], (C) 55S4.3 BioglassR, (D) A/W glass-ceramic [apatite/wollastonite], (E) HA, (F) KGX CeravitalR, and (G) Al2O3 - Si3N4)…………………………………………………………………..…...…20
Fig. 3 The schematic presentation of dental implant………….…………...23
Fig. 4 (a) Mandibular subperiosteal implant, this particular implant has a whitish-gray Hydroxyapatite, (b) one stage surgery, and (c) two stage surgery. …………………………..……………………….……..26
Fig. 5 The procedure of dental implant (a) implant placement, (b) abutment connection, and (c) final prosthetic restoration….….…28
Fig. 6 The component of the hip joint………………………………….……...35
Fig.7 The hip joint with arthritis………………………………..…………..…..37
Fig. 8 The atomic arrangement of hydroxyapatite, Ca10(PO4)6(OH)2, in a hexagonal unit cell. The OH ions located in the corners of the unit cell are surrounded by two groups of Ca(Ⅱ) atoms arranged in a triangle positions at z = 0.25 and at 0.75; by two groups of PO4 tetrahedral also arranged in triangle positions; and by a hexagonal array of Ca(I) atoms at the outermost distance………………………..44
Fig. 9 The comparative positions of OH, F and Cl atoms at the center of the Ca(II) triangles in HA, Ca10(PO4)(OH)2; FA, CA10(PO4)6F2; and ClA, Ca10(PO4)6Cl2………………………………………………………………..45
Fig. 10 In both structures, slightly distorted octahedral are the basic building units. The bond lengths and angles of the octahedral coordinated Ti atoms are indicated and the stacking of the octahedral in both structures is show on the right side..…………....51
Fig. 11. Concentration of H+ in solution near a surface controlled by concentration polarization. (CB: the H+ concentration of the uniform bulk solution, δ: the thickness of the concentration gradient in solution)………………………………………………………………….…..57
Fig. 12 The schematic of the tensile test ………………………...………..…75
Fig. 13 Cathodic polarization curves of pure Ti in the mixed solution of 0.042 M and 0.025 M aerated in air (─) and deaerated with N2 (…), respectively………………………………..84
Fig. 14 Cathodic polarization curves of pure Ti in HCl ( pH = 4.76 ), 0.042 M and 0.025 M which were compared to the mixed, respectively……………………………………………..……..85
Fig. 15 XRD patterns of specimens deposited at (1) 0.3 mA/cm2, (2) 1 mA/cm2, (3) 2 mA/cm2, and (4) 3 mA/cm2……………………………….86
Fig. 16 SEM observations of specimens deposited at current densities of (a) 0.3 mA/cm2 ( 350 ×), (b) 1 mA/cm2 the left ( 350 ×) and the right ( 10000 ×), (c) 2 mA/cm2 the left ( 350 ×) and the right ( 10000 ×), and (d) 3 mA/cm2 the left ( 350 ×) and the right ( 1500 ×), respectuvely…………………………………………………………….…...87
Fig. 17 XRD patterns of specimens (1) as deposited at 2 mA/cm2, (2) after annealed at 100℃, (3) 200℃ and (4) 300℃ for 4 hr, respectively……………………………………………………………...…..88
Fig. 18 (a) XRD patterns of CaP and Al2O3 / CaP as-coated specimens, respectively. (b) XRD patterns of CaP and Al2O3 / CaP coated specimens annealed at 400℃, respectively………….……………...94
Fig. 19 Friction force versus load diagrams of the scratch test on (a) CaP coated and (b) Al2O3/CaP coated specimens, respectively………....95
Fig. 20 SEM observation (a), and EDS mapping of P (b) and Ti (c) at scratch load 3 N for the CaP/Ti coated specimen…………………….96
Fig. 21 SEM observation (a), and EDS mapping of P (b), Ti (c) and Al (d) at scratch load 13 N for the Al2O3/CaP coated specimen……………….97
Fig. 22 SEM observation (a), and EDS mapping of P (b), Ti (c) and Al (d) at scratch load 23 N for the Al2O3/CaP coated specimen…...…………..98
Fig. 23 SEM observation of CaP coated specimen (a) and (b), and Al2O3/CaP coated specimen (c) and (d), respectively……………….99
Fig. 24 SEM cross section observations and EDS line mappings of Ca, P, and Ti for CaP coated specimen, respectively……………………….100
Fig. 25 SEM cross section observations and EDS line mappings of Ca, P, Al and Ti for Al2O3/CaP composite coated specimen.………………101
Fig. 26 Cyclic polarization curves of (a) Ti, (b) CaP coated, and (c) Al2O3/CaP coated specimens in Hank’s solution at 36±1℃.…….....102
Fig. 27 Plots of weight loss versus immersion time for CaP coated and Al2O3/CaP coated specimens in Hank’s solution at 36±1℃……......103
Fig. 28 SEM observations of CaP coated specimens annealed at 400℃ and then immersed in Hank’s solution for (a) 7 days, (b) 14 days, (c) 21 days, and (d) 30 days, respectively………………………..…..…104
Fig. 29 XRD patterns of CaP coated specimens annealed at 400℃ and then immersed in Hank’s solution for 7 days, 14 days, 21 days, and 30 days, respectively………………………………..……………….…105
Fig. 30 XRD patterns of Al2O3/CaP specimens annealed at 400℃ and then immersed in Hank’s solution for 7 days, 14 days, 21 days, and 30 days, respectively……………………………………..…………….106
Fig. 31 XRD patterns of CaP and Al2O3/CaP coated specimens after annealed at 700℃, respectively………………...…………………….107
Fig. 32 Cathodic polarization curves of pure Ti in 0.1 M TiCl4 alcoholic and HCl aqueous solution aerated in air and deaerated with N2, respectively…………………………………………………………..…..120
Fig. 33 XRD patterns of (a) the untreated and TGO (300, 500, 700℃), and (b) the as-coated and EDT (300, 500, 700℃) specimens. (A:Anatase, R:Rutile, T:Ti)…………………………………………………..………...121
Fig. 34 XPS of Ti2P on the untreated and EDT 300 specimen……….……122
Fig. 35 XPS of O1S on the untreated and EDT 300 specimen….…………123
Fig. 36 TG-DAT diagrams of the as-coated TiO(OH)2•H2O powders……124
Fig. 37 SEM observation of (a) EDT 300 (×15000), (b) EDT 300 (×100000), (c) EDT 700 (×10000) and (d) EDT 700 (100000) specimens……..…125
Fig. 38 AFM observation of (a) EDT 300, and (b) EDT 700 specimens....127
Fig. 39 SEM cross-sectional observation of EDT 300 specimen………..128
Fig. 40 Cyclic polarization curves of the uncoated, EDT (300, 500, 700), and TGO (300, 500, 700) in SBF solution…………..………………..129
Fig. 41 Cyclic polarization curves of the uncoated, EDT 300, and EDT 700 specimens in artificial saliva solution and 1000 ppm fluoride-containing saliva solution…………………………………..130
Fig. 42 Plots of weight gain vs. immersion time for untreated, EDT 300, and EDT 700 specimens in SBF solution at 36±1℃..………..…….131
Fig. 43 XRD patterns of (a) untreated, (b) EDT 700, and (c) EDT 30 specimens immersed in SBF solution for 3, 7, 14, and 21 days, respectively……………………………………………………………....132
Fig. 44 SEM observation of (a) untreated, (b) EDT 700, and (c) EDT 300 specimens immersed in SBF solution for 0, 3, 7, 14, and 21 days, respectively………………………………………………………………133
Fig. 45 The higher magnification of the ball-like particles……………….134
Fig. 46 The Ca and P concentrations of the SBF as a function of immersion time of the ntreated, EDT 300, and EDT 700 specimens……………………………………………………………….135
Fig. 47 SEM observation of osteoblast-like cells (G-292) incubation for 7 days on (a) PS (polystyrene), (b) untreated, (c) EDT 300, (d) TGO 300, (e) EDT 500, (f) TGO 500, (g) EDT 700, and (h) TGO 700……137
Fig. 48 MTT activity of the osteoblast-like cells (G-292) after (a) 1 day, (b) 3 days, (c) 7 days, and (d) 14 days incubation on untreated, PS, TGO (300, 500, 700℃) and EDT (300, 500, 700℃) specimens……………138
Fig. 49 ALP activity of the osteoblast-like cells (G-292) after 14 days incubation on untreated, PS, TGO (300, 500, 700) and EDT (300, 500, 700) specimens……………………………………………………………140
Fig. 50 XRD patterns of CaP coated specimens as-coated and annealed at 300℃, 500℃, 700℃, respectively……………………………………....151
Fig. 51 XRD patterns of HA/TiO2 coated specimens as coated and annealed at 300℃, 500℃ and 700℃, respectively………………...152
Fig. 52 Cathodic polarization curves of untreated Ti and TiO(OH)2H2O coated in the mixed solution of 0.042M Ca(NO3)2•4H2O and 0.025M NH4H2PO4 at 65℃………………………………………………………..153
Fig. 53 SEM observations of (a) CaP-300℃, and (b) HA/TiO2-300℃ specimens upper layer morphology, and (c) HA/TiO2-300℃ specimen interface layer morphology……………………………….154
Fig. 54 Cyclic polarization curves of the uncoated, EDT-300℃, TGO-300℃, CaP-300℃, and HA/TiO2-300℃ specimens in SBF solution…….155
Fig. 55 Cyclic polarization curves of the uncoated and HA/TiO2 specimens in artificial saliva solution and 1000 ppm fluoride-containing saliva solution..…………………………………156
Fig. 56 Plots of weight gain vs. immersion time for (a) untreated, (b) CaP-300℃ and (c) HA/TiO2-300℃ specimens in SBF solution at 37℃…………………………………………………………………………...157
Fig. 57 XRD patterns of CaP-300℃ specimens immersed in SBF solution for 1, 3, 7, 14, and 21 days, respectively…………………………….158
Fig. 58 XRD patterns of HA/TiO2-300℃ specimens immersed in SBF solution for 1, 3, 7, 14, and 21 days, respectively…………………159
Fig. 59 SEM observation of CaP-300℃ specimen immersed in SBF solution for (a) before (b) 3 days, (c) 7days, (d) 14 days, (e) 21 days, and (f) 30 days……………………………………………………………160
Fig. 60 SEM observation of CaP-300℃ specimen immersed in SBF solution for (a) before (b) 3 days, (c) 7days, (d) 14 days, (e) 21 days, and (f) 30 days……………………………………………………………161
Fig. 61 SEM photographs and EDS images of fracture surface of (a) CaP-300℃, (b) HA/TiO2-300℃ and (c) another clamp of HA/TiO2-300℃ coated………………………………………………….162
Fig. 62 Bonding strength of CaP-300℃ and HA/TiO2-300℃ coating proceed tensile tests……………………………………………………163
Fig. 63 SEM cross-section observations (a) EDT-300℃, (b) CaP-300℃, (c) HA/TiO2-300℃ specimens and (d) EDS line profiles of O, P, Ca, Ti on HA/TiO2-300℃ specimen…………………………………………..164
Fig. 64 MTT assay showing relative activity of the G-292 osteoblast-like cells after (a) 1day, (b) 3 days, (c) 7 days and (d) 14 days grown on polystyrene (PS), untreated Ti, CaP-300℃, and HA/TiO2-300℃ specimens………………………………………………………………..165
Fig. 65 Alkaline phosphatase activity of the G-292 osteoblast-like cells after 14 days grown on polystyrene (PS), untreated Ti, CaP-300℃, and HA/TiO2-300℃ specimens…………………………………….…166
Fig. 66 SEM observation of G-292 osteoblast-like cells grown for 3 days on (a) tissue culture flask (PS), (b) untreated Ti, (c) CaP-300℃, and (d) HA/TiO2-300℃ specimens………………………………………...167
Fig. 67 SEM observation of G-292 osteoblast-like cells grown for 7 days on (a) tissue culture flask (PS), (b) untreated Ti, (c) CaP-300℃, and (d) HA/TiO2-300℃ specimens………………………………………...168
Fig. 68 Organ culture of (a) Untreated and (b) HA/TiO2 coated specimen after 1 week……………………………………………………………….169
Fig. 69 Organ culture of (a) Untreated and (b) HA/TiO2 coated specimen after 2 weeks……………………………………………………………..170
Fig. 70 Organ culture of (a) Untreated and (b) HA/TiO2 coated specimen after 3 weeks……………………………………………………………..171
Fig. 71 Organ culture of (a) Untreated and (b) HA/TiO2 coated specimen after 4 weeks……………………………………………………………..172
Table contents
Table.1 Materials for use in the body………………………………………….11
Table.2 Types of bioceramics-Tissue attachment and bioceramic classification…………………………………………………….……..19
Table.3 The physical and chemical properties of hydroxyapatite……….41
Table.4 Comparative composition, crystallographic and mechanical properties of human enamel, bone and hydroxyapatite ceramic…………………………………………………………………..42
Table.5 A summary of calcium phosphate materials………………….……48
Table.6 Some techniques that have been tried are summarized in the following table………………………………………………………….49
Table.7 Nominal Chemical Composition of ASTM F67 Garde 1 pure Ti……..…………………………………………………………………...60
Table.8 pH, O2, molar concentrations, the 1st, 2nd and 3rd limiting current densities of polarization tests in Ca(NO3)2•4H2O, NH4H2PO4, the mixed solutions and HCl solutions, respectively……………………………………………………………..60
Table.9 Molar concentration, pH, O2, the 1st, 2nd and 3rd limiting current densities of polarization tests TiCl4 alcohol and HCl aqueous solutions,respectively………………………………………………..66
Table.10 Polarization test result…………………………..…………………108
Table.11 The crystallite size and weight percentage of electrolytic deposition TiO2 films at 300℃, 500℃, and 700℃, respectively……………………………………………………..……..141
Table.12 Corrosion potential Ecorr, corrosion current density icorr, passivate current density (ipass), and polarization resistance Rp of the untreated, TGO (300, 500, 700℃) and EDT (300, 500, 700℃), derived from the polarization test in 37℃ Hank’s solution...…141
Table. 13 Corrosion potential Ecorr, corrosion current density icorr, passivate current density ipass, and polarization resistance Rp of the untreated, EDT 300, and EDT 700 specimens in aerated artificial saliva solution and 1000 ppm fluoride-containing saliva solution, respectively………………………………………………..142
Table.14 Corrosion potential Ecorr, corrosion current density icorr, passivate current density ipass, and polarization resistance Rp of the untreated, TGO-300℃, EDT-300℃, EDT-500℃, EDT-700℃, CaP-300℃ and HA/TiO2-300℃ specimens………………………173
Table.15 Corrosion potential Ecorr, corrosion current density icorr, passivate current density ipass, and polarization resistance Rp of the untreated and HA/TiO2-300℃ specimens……………………173
References
1. F. Watari, A. Yokoyama, F. Saso, M. Uo and T. Kawasaki, Composites Part B: Engineering, 28B, 5 (1997).
2. D. F. Williams, J. Mater. Sci., 17, 1233 (1982).
3. P. Li, I. Kangasniemi, K. D. Groot and T. Kokubo, J. Am. Ceram. Soc., 77, 2307 (1994).
4. D. J. Li, K. Ohsaki, K. Ii, P. C. Cui, Q. Ye, K. Baba, Q. C. Wang, S. Tesshin and T. T. Yamamoto, J. Biomed. Mater. Res., 45, 322 (1999).
5. J. M. Anderson and K. M. Miller, Biomaterials, 5, 5 (1984).
6. J. T. Jacob-LaBarre, M. Assouline, T. Byrd and M. McDonald, J. Biomed. Mater. Res., 28, 699 (1994).
7. T. Hanawa, Mater. Sci. Eng. A., 267, 260 (1999).
8. K. Merritt and S. A. Brown, J. Biomed. Mater. Res., 22, 111 (1988).
9. R. L. Williams, S. A. Brown and K. Merritt, Biomaterials, 9, 181 (1988).
10. P. Locci, C. Lilli, L. Marinucci, M. Calvitti, S. Belcastro, S. Bellocchio, N Staffolani, M. Guerra and E. Becchetti, J. Biomed. Materi. Res., 53, 560(2000).
11. C. Ku, D. Pioletti, M. Browne and PJ. Gregson, Biomaterials, 23, 1447(2002).
12. Y. X. Leng, N. Hung, P. Yang, J. Y. Chen, H. Sun, J. Wang, G. J. Wan, X. B. Tian, R. K. Y. Fu, L. P. Wang and P. K. Chu, Surf. Coat. Technol., 123, 268 (2000).
13. S. L. Goodman, K. S. Tweden and R. M. Albrecht, Cell Mater., 5, 15 (1995).
14. G. A. Parks, Chem. Rev., 65, 177 (1965).
15. N. Huang, Y. Chen and J. Luo, J. Biomater. Appl., 8, 404 (1994).
16. D. B. Hannow, P. F. James and R. V. Noort, J. Mater. Sci., 7, 255 (1996).
17. A. Yamamoto, R. Honma and M. Sumita, J. Biomed. Mater. Res., 39, 331 (1998).
18. J. Pouilleau, D. Devillers, F. Garrido, S. Durand-Vidal and E. Mahe, Mater. Sci. Eng. B., 47, 235 (1997).
19. N. Katsunari, Clinical Materials, 12, 159 (1993).
20. G. K. De, R. Geesink, C. P. A. T. Klein and P. Serekian, J. Biomed. Mater. Res., 121, 1357 (1987).
21. K. Teraoka. T. Nonami, Y. Doi, H. Taoda, K. Naganuma, Y. Yokogawa, and T. Kameyama, Materials Science and Engineering C: Biomimetic and Supramolecular Systems, 13, 105 (2000).
22. G. L. De Lange and K. Danath, Biomaterials, 10, 121 (1989).
23. G. Jiang and D. Shi, J. Biomed. Mater. Res., 150, 77 (1997).
24. Y. Ohtsuka and M. Matsuara, Surf. Coat. Tech., 65, 224 (1994).
25. K. V. Dijk, H. G. Schaeken, J. G. G. Wolke and J. A. Jansen, Biomaterials, 17, 159 (1998).
26. O. Yoshino and M. Masamichi, Surf. Coat. Tech., 65, 224 (1994) 224.
27. C. K. Wang and L. J. H. Chern, Biomaterials, 18, 331 (1997).
28. R. Damodaran and B. M. Moudgil, Colloids and Surface A: Physicochemical and Engineering Aspects, 80, 191 (1993).
29. W. Weng and JL. Baptista, J. Am. Ceram. Soc., 82, 27 (1999).
30. H. Hero, H. Wie and R. B. Jorgensen, J. Biomed. Mater. Res., 28, 343(1994).
31. S. K. Yen and C. M. Lin, Mater. Chem. Phys., 77, 70 (2002).
32. S. K. Yen and C. M. Lin, J. Electrochem. Soc., 149, D79 (2002).
33. C. M. Lin and S. K. Yen, J. Electrochem. Soc., accepted and in press (2004).
34. C. M. Lin and S. K. Yen, Journal of Materials Science: Materials in Medicine, accepted and in press (2004).
35. C. M. Lin and S. K. Yen, Journal of Metastable & Nanocrystalline Materials, accepted and in press (2004).
36. C. E. Misch and F. Dietsch, Implant Dent., 2, 158 (1993).
37. D. G. Smiler, Pract. Periodent. Aesthetic. Dent., 8, 413-416 (1996).
38. M. R. Urist and B. S. Strates, J. Dent. Res., 50, 1392 (1971).
39. P. D. Costantino and C. D. Friedman, Craniofac Skeletal Augmentation Replacement, 1037 (1994).
40. J. O. Hollinger, J. Brekke, E. Gruskin and D. Lee, Clin. Orthop. Related, Res., 324, 55 (1996).
41. C. M. Mintzer, D. D. Robertson, S. Rackemann, F. C. Ewald, R. D. Scott and M. Spector, Clin. Orthop., 260, 135 (1990).
42. J. B. Park and R. S. Lakes, Biomaterials an introduction, Plenum Press, New York, 1 (1992).
43. S. J. Charnley, http://www.hipsandknees.com/hip/charnley.htm.
44. P. I. Branemark, R. Adell, U. Breine, B. O. Hansson, J. Lindstrom and A. Ohlsson, J. Plast. Reconstr. Surg., 3, 81 (1969).
45. D. F. Williams, J.Black and P. J. Dohetry, Biomaterial-tissue interfaces, Elsever, Amsterdam, 525 (1992).
46. L. Hench, Biomaterials science: an introduction to materials in medicine, Academic Press, San Diego, 73 (1996).
47. P. Thomsen and L. E. Ericson, The bone biomaterial interface, University of Toronto press, Toronto, 153-164 (1991).
48. A. Klinger, D. Steinberg, D. Kohavi and M. N. Sela, J. Biomed. Mater. Res., 36, 387-392 (1997).
49. J. B. Park and R. S. Lakes, Biomaterials an introduction, Plenum Press, New York, (1992).
50. J. A Helsen and H. J. Breme, Metals as Biomaterials, John Wiley & Sons, England, 37 (1998).
51. L. L. Hench and J. Wilson, An Introduction to Bioceramics, World Scientific, Singapore, 1, 1 (1993).
52. J. F. Shackelford, Materials Science Forum, 293, 1 (1999).
53. http://www.bg.ic.ac.uk/Lectures/Hench/BioGlass/cal3.htm
54. D. L. Wise, D. J. Trantolo, K. U. Lewandrowski, J. D. Gresser, M. V. Cattaneo and M. J. Yaszemski, Biomedicals Engineering and Devices: Human applications, Humana Press Totowa, New Jersey, 12 (2000).
55. http://www.spdc.com.tw.
56. G. Dahl, Odontol. Tskr., 51, 440 (1943).
57. http://www.nobelbiocare.com.
58. http://www.yourdens.com.tw.
59. http://arizonaimplantdentist.com/advantages_of_using_dental_impla.htm.
60. D. Van Steenberghe, Curr. Opin. Dent., 1, 138 (1991).
61. M. Yoshinari, Y. Oda, T. Kato and K. Okadu, Biomaterials, 22, 2043 (2001).
62. A. Leonhardt and G. Dahlen, Eur. J. Oral. Sci., 103, 382 (1995).
63. M. Bellanda, C. Cassinelli and M. Morra, J. Biomed. Mater. Res., 36, 216 (1997).
64. R. M. Meffert, B. Langer and M. E. Fritz, J. Periodontol., 63, 859 (1992).
65. http://orthoinfo.aaos.org/booklet/thr_report.cfm?thread_id=2&topcategory=hip.
66. http://www.doc4bones.com/joint_replacement.shtml.
67. American Academy of Orthopaedic Surgeons (AAOS) Research Dept., Arthroplasty and Total Joint Replacement Procedures 1990-1999.
68. I. Degasne, M.F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier and D. Chappard, Calcif. Tissue Int., 64, 499-507 (1999).
69. H. F. Hildebrand, C. Veron and P. Martin, Biomaterials, 10, 545 (1989).
70. IARC, 2, IARC, Lyon (1973).
71. V. Saikko and T. Ahlroos, Wear, 207, 86 (1997).
72. J. L. Tipper, A. Hatton, J. E. Nevelos, E. Ingham, C. Doyle, R. Streicher, A. B. Nevelos and J. Fisher, Biomaterials, 23, 3441 (2002).
73. L. L. Hench and J. Wilson, An Introduction to Bioceramics, World Scientific, Singapore, 1, 145 (1999).
74. L. L. Hench, J. Am. Ceram. Soc., 74, 1487 (1991).
75. G. Dewith, H. J. A. Van Dijk, N. Hattu and K. Prijs, J. Mater. Sci., 16, 1592 (1981).
76. R. A. Young and J. C. Elliot, Archs. Oral. Biol., 11, 699 (1966).
77. J. N. Kent, J. H. Quinn, M. F. Zide, L. R. Guerra and P. J. Boyne, J. Oral. Maxillofac. Surg., 41, 429 (1983).
78. L. L. Hench and E. C. Ethridge, Biomaterials, Academic Press, New York (1982).
79. H. Oonishi, M Yamamuro, H. Ishimaru, E. Tsuji, S. Kushitani, M. Aono and Y. Ukon, Bioceramics, Proceeding of 1st International Bioceramic Symposium, Ishiyaku EuroAmerica Inc., 1, 400 (1989).
80. P. Ducheyne and K. Healy, Bioceramics, Proceeding of 1st International Bioceramic Symposium, Ishiyaku EuroAmerica Inc., 1, 359 (1989).
81. S. D. Cook, K. A. Thomas, J. E. Dalton, T. K. Volkman, T. S. Whitecloud and J. F. Kay, J. Biomed. Mater. Res., 26, 989 (1992).
82. J. G. C. Wolke, J. P. C. M. van der Waerden, K. de Groot and J. A. Jansen, Biomaterials, 18, 483 (1997).
83. S. J. Ding, C. P. Ju and J. H. Chern Lin, J. Biomed. Mater. Res., 44, 266 (1999).
84. C. K. Wang, J. H. Chern Lin, C. P. Ju, H. C. Ong and R. P. H. Chang, Biomaterials, 18, 1331 (1997).
85. C. M. Lopatin, V. Pizziconi, T. L. Alford and T. Laursen, Thin Solid Films, 326, 227 (1998).
86. P. Ducheyne, S. Radin, M. Heughebaert and J. C. Heughebaert, Biomaterials, 11, 244 (1990).
87. M. Gottlander, C. B. Hohansson, A. Wennerberg, T. Albrektsson, S. Radin and P. Ducheyne, Biomaterials, 18, 551 (1997).
88. M Shirkhanzadeh, J. Mater. Sci. Lett., 10, 1415 (1991).
89. T. V. Vijayaraghavan and A. Bensalem, J. Mater. Sci. Lett., 13, 1782 (1994).
90. G. L. de Lange and K. Donath, Biomaterials, 10, 121 (1989).
91. V. J. Hetherington, C. E. Lord and S. A. Brown, J. Appl. Biomater., 6, 243 (1995).
92. A. Hasegawa, T. Kameyama, A. Motoe, M. Ueda, K. Akashi and K. Fukuda, J. Ceram. Soc. Jpn., 100, 377 (1992).
93. M. Toriyama, Y. Kawamoto, T. Suzuki, Y. Yokogawa, K. F. Nagata and M. R. Mucalo, J. Mater. Sci. Lett., 15, 179 (1996).
94. H. G. Pfaff and G. Willmann, Interceramic, 43, 73 (1994).
95. J. F. Kay, Dental Clinics of North America, 36, 1 (1992).
96. P. Cheang and K. A. Khor, Biomaterials, 17, 537 (1996).
97. F. A. Grant, Rev. Mod. Phys., 31, 646 (1959).
98. G. V. Samsonov, The Oxide Handbook, IFI/Plenum Press, New York (1982).
99. U. Diebold, Surface Science Reports, 48, 53 (2003).
100. N. Huang, Y. Chen and J. Luo, J. Biomater. Appl., 8, 404 (1994).
101. J. Pouilleau, D. Devillers, F. Garrido, S. Durand-Vidal and E. Mahe, Mater. Sci. Eng. B., 47, 235 (1997).
102. S. B. Amor, G. Baud, J. P. Besse and M. Jacquet, Mater. Sci. Eng. B., 47, 110 (1997).
103. A. Bendavid, P. J. Martin and H. Takikawa, Thin Solid Films, 360, 241 (2000).
104. S. Mandl, G. Thorwarth, M. Schreck, B. Stritzker and B. Rauschenbach, Surf. Coat. Technol., 125, 84 (2000).
105. N. Huang, P. Yang and X, Chen, Biomaterials, 19, 771 (1998).
106. J. Liqiang, S. Xiaojum, C. Weimin, X. Zili, D. Yaoguo and F. Honggang, J. Phys. Chem. Solids, 64, 615 (2003).
107. C. Natarajan and G. Nogami, J. Electrochem. Soc., 143, 1547 (1996).
108. I. Zhitomirsky, Nanostructure Materials, 8, 521 (1997).
109. A. Mills, H. R. Davies, D. Worsley, Chem. Soc. Rev., 22, 417 (1993).
110. P. C. Maness, S. Smolinski, W. A. Jacoby, Apply. Environ. Microbiol., 65, 4094 (1999).
111. Y. Paz, Z. Luo, L. Rabenberg and A. Heller, J. Mater. Res., 10, 2842 (1995).
112. I. Poulios, P. Spathis and P. Tsoumparis, J. Environ. Sci. Health, 34, 1455 (1999).
113. R. Cai, K. Hashimoto, K. Itoh, Y. Kubota and A. Fujishima, Bull. Chem. Soc. Jpn., 64, 1268 (1991).
114. B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons, Biomaterials Science-An Introduction to Materials in Medicine, Academic Press, San Diego (1996).
115. C. Sittig, M. Textor, N. D. Spencer, M. Wieland and P. H. Vallotton, J. Mater. Sci., 10, 35 (1999).
116. J. Lausmaa, M. Ask, U. Rolander and B. Kasemo, Mater. Res. Soc. Symp. Proc., 110, 647 (1988).
117. M. C. Sunny and C. P. Sharma, J. Biomater. Appl., 6, 89 (1991).
118. A. Wisbey, P. J. Gregson and L. M. Pater, Biomaterials, 12, 470 (1991).
119. M. Stern and A. L. Geary, J. Electrochem. Soc., 104, 56 (1975).
120. D. A. Jones, Corrosion, Prentice Hall International, Inc., Singapore (1997).
121. H. M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res., 38, 121 (1997).
122. S. K. Yen and S. W. Shu, J. Biomed. Mater. Res., 54, 412-418 (2001).
123. K. L. Kirkwood, R. Dziak and P. G. Bradford, J. Bone Mineral. Res., 11, 1889 (1996).
124. P. A. ramires, A. Romito, F. Cosentino and E. Milella, Biomaterials, 22, 1467 (2001).
125. O. H. Lowry, N. R. Roberts, M. L. Wu, W. S. Hixon and E. J. Crawford, J. Biomed. Chem., 207, 19 (1954).
126. R. J. Majeska, J. T. Ryaby and T. A. Einhorn, J. Orth. Res., 20, 281 (2002).
127. Designation: C-633. Standard test method for adhesion of cohesive strength of flame-sprayed coatings, Annual Book of ASTM Standards. Philadelphua, PA: American Society for testing and materials 3.01, 665 (1993).
128. T. Kokubo, H. M. Kim and M. Kawashita, Biomaterials, 24, 2161 (2003).
129. I. Gerber and I. Ap Gwynn, European Cells and Materials, 2, 10 (2001).
130. R. G. Courteney-Harris, M. V. Kayser and S. Downes, Biomaterials, 16, 489 (1995).
131. C. F. Feng, K. A. Khor, E. J. Liu, P. Cheang, Scripta Materialia, 42, 103 (1999).
132. H. C. Hsu, S. K. Yen, Dental Materials, 14, 339 (1998).
133. S. K. Yen, C. C. Chang, The 2nd International Conference on Intelligent Processing and Manufacturing of Materials, Hawaii, 12, 779 (1999).
134. A. Bigi, E. Boanini, R. Botter, S. Panzavolta, and K. Rubini, Biomaterials, 23, 1849 (2002).
135. Z. Qinghong, G. Lian, G. Jingkun, B McKinney and M. Rouse, Appl. Catal. B., 26, 207 (2000).
136. M. Shirkhanzadeh, J. Mater. Sci., Mater. Med., 6, 206 (1995).
137. K. E. Healy and P. Ducheyne, Biomaterials, 13, 553 (1992).
138. K. Ida, Y. Tani, S. Tsutsumi, T. Togaya, T. Nambu, K. Suese, T. Kawazoe and M. Nakamura, Dent. Mater., 4 191 (1985).
139. M. Kosmulski, Colloid Polym. Sci., 271 1076 (1993).
140. T. Kokubo, H. M. Kim and M. Kawashita, Biomaterials, 24 2161 (2003).
141. C. M. Lin and S. K. Yen, World Congress on Medical Physics and Biomedical Engineering, Sydney, Australia, MO.TR7 181, 35 (2003).
142. A. Ben-Ze’ev, Curr. Opin. Cell Biol., 9 99 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top