(3.236.100.6) 您好!臺灣時間:2021/04/24 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝泓鈞
研究生(外文):Hung-Chun Hsieh
論文名稱:加熱及加壓處理對transglutaminase(TGase)在吳郭魚魚漿中凝膠作用之影響
論文名稱(外文):Effects of High Pressure and Temperature on the Gelation Properties of Tilapia Surimi Enchanced by Transglutaminase (TGase)
指導教授:柯文慶柯文慶引用關係
指導教授(外文):Wen-Ching Ko
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:100
中文關鍵詞:吳郭魚魚漿加壓處理轉穀氨醯胺酶凝膠
外文關鍵詞:tilapiasurimihigh pressuretransglutaminasegelation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1859
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:185
  • 收藏至我的研究室書目清單書目收藏:0
微生物轉穀氨醯胺酶(microbial transglutaminase ; MTGase;TGase;TG)能催化蛋白質中一級胺與穀胺醯胺酸殘基(Gln residue)之轉醯反應,一般被認為與魚漿低溫凝膠(setting; suwari)有關,在魚肉煉製品(kamaboko)製造中扮演重要角色。本研究首先探討 TGase 對吳郭魚魚漿凝膠性之影響,並進一步觀察於不同溫度及壓力處理下,能否促進 TGase 在魚漿及魚糕中的作用。
結果顯示,TGase 處理能提升吳郭魚魚漿凝膠之硬度、彈性、凝膠強度及保水力,使 G’、G” 值上升及Tanδ 下降,但對色澤並無明顯影響;TGase 處理會生成ε-(γ-glutamyl)lysine之共價鍵結(GL bond),導致蛋白質不易溶出而使蛋白質溶解度有下降的趨勢;電泳分析則顯示,myosin heavy chain (MHC)會因 TGase 處理而交鏈鍵結成聚合分子,導致 MHC 含量減少;SEM 觀察魚漿凝膠之結構,發現 TGase 處理會造成魚漿因凝集現象而形成團狀聚集(clusters)及較大孔洞。
另將 TGase 加熱(4~50℃)處理,在較高的溫度下,酵素失活情形較為劇烈;而加壓(0.1~300 MPa)處理所造成的失活情形並不明顯。 TGase 在不同溫度(30~60℃)下呈示不同酵素活性,在 50℃ 下為最適反應溫度;但 TGase 經不同壓力處理後,其活性間無明顯差異。溫度(30~60℃)及壓力(0.1~ 300 MPa)處理皆具有促進 TGase 在魚漿中的作用,而提升所製得煉製品之硬度、彈性、凝膠強度及保水力,並提升其 G’ 及 G” 值,且對白色度無明顯之影響。在蛋白質溶解度及電泳圖上,在不同壓力處理下,肌凝蛋白含量及蛋白質溶解度變化情況並不明顯,但在不同溫度處理此二者均有明顯改變,可見添加 TGase 之魚漿在不同溫度及壓力之誘導下,有其不同之作用機制。
ABSTRACT
Microbial transglutaminase (MTGase ; TGase ; TG) catalyzes the acyl transfer reaction between primary amines and glutamine residues in proteins and peptides. The enzyme is generally recognized to be related to the low temperature gelation phenomenon (setting; suwari) of salted fish pastes. It plays important roles during processing of fish meat gel products (kamabokos). In this study, the effect of TGase with various activities on gelation of tilapia meat pastes was investigated. Improvement effects of TGase in surimi and kamaboko were also evaluated by means of both heat- and pressure-treatment.
Gel forming properties including breaking force, breaking strain, gel strength, and water holding capacity of tilapia meat paste increased with TGase treatment. Increase in G’ and G’’ and decrease in Tan of obtained gels were observed, but no obvious change in appearance color. The decrease in protein solubility might be resulted from the formation of intermolecular ε-(γ-glutamyl)lysine (GL bonds) due to TGase treatment. SDS-PAGE analysis showed that myosin heavy chain (MHC) decreased with increasing the concentration of TGase. Electron microscopy observed TGase treatment caused the aggregation of tilapia pastes and thus formed gel with clusters and larger cavities.
The activity of TGase decreased with heat-treatment at 4~50℃, while no obvious change for that of pressure-treatments at 0.1~300 MPa. TGase showed different activities under different temperatures (30~60℃), and 50℃ was its optimal activation temperature, but TGase was not activated by pressure-treatments (0.1~300MPa). On the other hand, both heat- and pressure-treatments promoted the action of TGase in tilapia pastes. Increases in breaking force, breaking strain, gel strength, water holding capacity, G’, G” and Tan of tilapia pastes, but tilapia gel had no obvious changes on white index (WI). Protein solubility and SDS-PAGE show the different results under different temperature and pressure that myosin heavy chain and protein solubility had fewer changes under pressure than under temperature treatment. Therefore, between temperatures and pressures had different mechanisms of gel formation by TGase treatment, but both of them could induce the increase of gel properties on surimi and kamaboko.
中文摘要-----------------------------------------------------Ⅰ
英文摘要-----------------------------------------------------Ⅱ
圖表索引-----------------------------------------------------Ⅶ
壹、前言------------------------------------------------------1
一、研究動機--------------------------------------------------1
二、文獻整理--------------------------------------------------2
(一)轉麩氨醯胺酶(TGase)來源-------------------------------2
(二)轉穀氨醯胺酶(TGase)之催化機制-------------------------3
(三)吳郭魚簡介----------------------------------------------4
(四)高壓技術------------------------------------------------5
1、高壓之發展-------------------------------------------------5
2、高壓發生原理-----------------------------------------------5
3、高壓在食品上之應用-----------------------------------------6
(五)凝膠機制------------------------------------------------6
1、魚漿凝膠形成原理-------------------------------------------6
2、壓力凝膠機制-----------------------------------------------7
3、熱凝膠機制-------------------------------------------------7
4、低溫凝膠及高溫解膠-----------------------------------------8
a、低溫凝膠---------------------------------------------------9
b、高溫解膠---------------------------------------------------9
5、TGase誘導凝膠機制-----------------------------------------10
(六)熱及壓力對TGase處理的影響------------------------------11
1、TGase 最適反應溫度----------------------------------------11
2、加熱對TGase活性之影響-------------------------------------12
3、加熱對TGase處理之影響-------------------------------------12
4、加壓對 TGase 活性之影響-----------------------------------13
5、加壓對TGase處理之影響-------------------------------------13
貳、材料與方法-----------------------------------------------14
一、研究架構-------------------------------------------------14
二、實驗材料-------------------------------------------------14
(一)吳郭魚-------------------------------------------------14
(二)轉麩氨醯胺酶-------------------------------------------14
(三)試驗藥品-----------------------------------------------14
三、實驗方法-------------------------------------------------18
(一)加壓處理-----------------------------------------------18
(二)凝膠之製備---------------------------------------------18
(三)TGase活性之測定----------------------------------------18
(四)凝膠性質之測定-----------------------------------------19
(五)色澤之測定---------------------------------------------19
(六)G’、G”及Tanδ值之則定---------------------------------20
(七)蛋白質溶解度測定---------------------------------------20
(八)保水力-------------------------------------------------20
(九)電泳---------------------------------------------------21
(十)SEM----------------------------------------------------21
(十一)蛋白質溶解度測定-------------------------------------21
(十二)統計分析---------------------------------------------23
參、結果與討論-----------------------------------------------24
PartⅠ.不同濃度TGase處理對吳郭魚魚漿之影響-------------------24
一、白色度---------------------------------------------------24
二、凝膠性質-------------------------------------------------24
三、流變特性-------------------------------------------------26
四、保水力---------------------------------------------------27
五、蛋白質溶解度---------------------------------------------27
六、SDS-PAGE-------------------------------------------------28
七、微細構造觀察---------------------------------------------28
PartⅡ. 加壓及加熱處理對 TGase 在吳郭魚魚漿及魚糕中的作用之影響-----------------------------------------------------------41
一、加熱及加壓對TGase活性之影響------------------------------41
二、TGase最適反應溫度、壓力之探討----------------------------42
三、白色度---------------------------------------------------43
四、凝膠性質-------------------------------------------------44
五、流變特性-------------------------------------------------49
六、保水力---------------------------------------------------51
七、蛋白質溶解度---------------------------------------------53
八、SDS-PAGE-------------------------------------------------55
肆、結論-----------------------------------------------------56
伍、參考文獻------------------------------------------------81
Akahane, T., Chihara, S., Tsuchiya, T., Nuguchi, S. and Ookami, H. 1981. Application of differential scanning calorimetry to food technological study of fish meat gels. Bull. Japan. Soc. Sci. Fish. 47:105-111.
Alvarez, G., Couso, I., Tejada, M., Solas, M.T. and Fernandez, B. 1992. Action of starch and egg white on the texture, water holding capacity and microstructure in surimi gel. In Quality Assurance in the Fish Industry, H. H. Huss, M. Jakobsen and J, Listion (Ed.), Development in Food Science. 30:449-459.
Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka, H. and Motoki, M. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53:2613-2617.
Angsupanich, K. and Ledward, D.A. 1998. High pressure treatment effects on cod muscle. Food Chem. 63:39-50.
Angsupanich, K., Eddie, M., and Ledward, D.A. 1999. Effects of high pressure on the myofibrillar proteins of cod and turkey muscle. J. Agric. Food Chem. 47:92-99.
Araki, H. and Seki, N. 1993. Comparison of reactivity of transglutaminase to various fish actomyosins. Nippon Suisan Gakkaishi. 59:711-719.
Ashie, I.N.A. and Lanier, T.C. 1999. High pressure effects on gelation of surimi and turkey breast muscle enhanced by microbial transglutaminase. J. Food Sci. 64:704 -708.
Autio, K., Kiesvaara, M. and Polvinen, K. 1989. Heat-induced gelation of minced rainbow trout (Salmo gairdneri): effect of pH, sodium chloride and setting. J. Food Sci. 54:805-808, 823.
Banly, C. and Masson, P. 1993. Effects of high pressure on proteins. Food Rev. Int. 9:611-628.
Benjakul, S. and Visessanguan, W. 2003. Transglutaminase-mediated setting in bigeye snapper Surimi. Food Res. Int. 36:253-256.
Berg Y.N., Lebedeva, N.A., Markina, E.A. and Ivanov, I.I. 1965. The effect of high pressure on some properties of myosin. Biokhimiya. 239 pp.
Biliaderis, C.G. 1988. Characterization of starch networks by small strain dynamic rheometry. p.87-135. In: Developments in Carbohydrate Chemistry, Ed. By Alexander, R. J. and Zobel, H. F. AACC, Inc., Minnesota. Bot. bull. Acad. Sin. 3:133-149.
Bradford, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
Bridgman, P.W. 1994. The coagulation of albumen by pressure. J. Biol. Chem. 19: 511-514.
Chanyongvorakul, Y., Matsumura, Y., Nonaka, M., Motoki, M. and Mori, T. 1995. Physical properties of soy bean and broad bean 11S globulin gels formed by transglutaminase reaction . J. Food Sci. 60: 483-488,493.
Chawla, S. P., Venugopol, V. and Nair, P. M. 1996. Gelation of proteins from washed muscle of thready bream (Nemipterus japonicus) under mild acidic conditions. J. Food Sci. 54: 362—366.
Cheftel, J.C. 1992. Effects of high hydrostatic pressure on food constituents: an overview. In High Pressure and Biotechnology, C. Balny, R. Hayashi, K. Heremans, and P. Masson (Ed.), pp 195-209. John Libbey Eurotext Ltd., London, England.
Cheftel, J.C. and Culioli, J. 1997. Effect of high pressure on meat: A review. Meat Sci. 46(3): 211-236.
Chen, H.H., Chiu, E.M., and Huang, J.R. 1997. Color and gel-forming properties of horse mackerel (Trachurus japonicus) as related to washing conditions. J. Food Sci. 62:985-991.
Chevalier, D., Bail, A. Le. and Ghoul, M. (2001). Effects of high pressure treatment (100~200MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Res. Int. 34: 425-429.
Davis, E.A. and Gordon, J. 1984. Micro structural analyses of gelling systems. Food Technol. 99-106,109.
Deuchi, T., Hayashi, R. High pressure treatments at subzero temperature: application to preservation, rapid freezing and rapid thawing of foods. In High Pressure and Biotechnology, Balny, C., Hayashi, R., Heremans, K., Masson, P., Eds., Colloque INSERM, John Libbey Eurotext Ltd. 1992. 224: 353-355.
Dickinson, E. and Pawlowsky, K. 1996. Effect of high-pressure treatment of protein on the rheology of flocculated emulsions containing protein and polysaccharide. J. Agric. Food Chem. 44: 2992-3000.
Dickinson, E. and Yamamoto, Y. 1996. Rheology of milk protein gels and protein-stabilized emulsion gels cross-linked with transglutaminase. J. Agri. Food Chem. 44: 1371-1377.
Elgasim, E.A. and Kennick, W.H. 1980. Effects of pressurization of prerigor beef muscles on protein quality. J. Food Sci. 45:1122-1124.
Folk, J. E. 1970. Transglutaminase in “Method in Enzymology”, Tabor, H. and C. W. Tabor (ed.), Vol. 17, pp 889-894. Acadenic Press, New York.
Folk, J. E. 1980. Transglutaminases. Ann. Rev. Biochem. 49: 517-531.
Folk, J. E. and Chung, S.I. 1973. Molecular and catalytic properties of transglutaminase. Adv. Enzymol. 38:109-191.
Folk, J. E. and Finlayson, J.S. 1977. The ε-(γ-glutamyl) lysine cross-link and the catalytic role of transglutaminase. Adv. Protein Chem. 31:1-133.
Fukuda, Y., Tarakita, Z., Kawamura, M., Kakehata, K. and Arai, K. 1982. Denaturation of myofibrillar protein in chub mackerel. Bull. Jap. Soc. Sci. Fish. 48: 1672-1676.
Gilleland, G.M., Lanier, T.C., and Hamann, D.D. 1997. Covalent bonding in pressure-induced fish protein gels. J. Food Sci. 62:713-716, 733.
Grinberg, V. Y., Grinberg, N. V., Bikbov, T. M. Bronich, T. K., and Mashkevich, A. Y. 1992. Thermotropic gelation of food protein. Food Hydrocolloid. 6: 69-96.
Amato, P.M., Wu, M.C. and Foegeding E.A. 1990. Inhibition of modori (gel weakening) in surimi by plasma hydrolysate and egg white. J. Food Sci. 55:665~669.
Hamann, D.D. 1992. Viscoelastic properties of surimi seafood products. Ch. 5 in Viscoelastic Properties of Foods, M.A. Rao and J.F. Steffe (Ed.), p. 157-171. Elsevier Applied Science, London and New York.
Hamann, D.D. and Webb N.B. 1979. Sensory and Instrumental evaluation of material properties of fish gels. J. Texture Studies. 10: 117~130.
Hamm, R.1972. “Kolloidchemie des fliushches” paul parey, Berlin. Hamburg.
Hayashi, R., Kawamura, Y., and Kunugi, S. 1987. Introduction of high pressure to food processing: preferential proteolysis of b-lactoglobulin in milk whey. J. Food Sci. 52:1107-1108.
Hermansson, A. M. 1978. Physico-chemical aspects of soy proteins structure formation. J. Texture Studies 9:33-41.
Hermansson, A. M. and Lucisano, M. 1982. Gel characteristics-water binding properties of blood plasma gels and methodological aspects on the water binding of gel system. J. Food Sci, 47: 1955-1959, 1964.
Heremans, L. and Heremans, K. 1989. Raman spectroscopic study of the changes in secondary structure of chymotrypsin: Effect of pH and pressure on the salt bridge. Biochim. Biophys. Acta. 999:192-197.
Hite, B.H. 1899. The effect of pressure in the preservation of milk. Bull. 58: 15. West Virginia Univ. Agr. Expt. Sta., Morgantown.
Hirose, M. 1993. Molten globule state of food protein. Trends Food Sci. Technol. 4: 48-51.
Hoover, D.G., Metrick, C., Papineau, A.M., Farkas, D.F., and Knorr, D. 1989. Biological effects of high hydrostatic pressure on food microorganisms. Food Technol. March: 99-107.
Ikeuchi, Y., Tanji, H., Kim, K., Suzuki, A. 1992. Mechanism of heat-induced gelation of pressurized actomyosin: Pressure-induced changes in actin and myosin in actomyosin. 40:1756-1761.
Icekson, I. and Apelbaum, A. 1987. Evidence for transglutaminase activity in plant tissue. Plant Physiol. 84:972-974.
Imai, C., Tsukamasa, Y., Sugiyama, M., Minegishi, Y., and Shimizu, Y. 1996. The effect of setting temperature on the relationship betweenε-(γ-glutamyl)lysine crosslink content and breaking strength in salt-ground meat of sardine and Alaska pollack. Nippon Suisan Gakkaishi 62: 104-111.
Jiang, S.T., Hsieh, J.F., Ho, M.L. and Chung, Y.C. 2000. Combination effects of microbial transglutaminase, reducing agent, and protease inhibitor on the quality of hairtail surimi. 65: 241-245.
Jiang, S.T., Hsieh, J.F., Ho, M.L. and Chung, Y.C. 2000b. Microbial transglutaminase affects gel properties of golden threadfin-bream and Pollack surimi. 64: 694-699.
Joseph, D., Lanier, T.C., and Hamann, D.D. 1994. Temperature and pH affect transglutaminase-catalyzed “setting” of crude fish actomyosin. J. Food Sci.59: 1018-1023.
Kalichevsky, M.T., Knorr, D., Lilliford, P.J. Potential food application of high-pressure effects on ice-water transition. Trends in Food Sci.&Technol. 1995. 6: 253-259.
Kamath, G.G., Lanier, T.C., Foegeding, E.A., and Hamann, D.D. 1992 Nondisulfide covalent crosslinking of myosin heavy chain in setting of Alaska pollock and Atlantic croaker surimi. J. Food Biochem. 16:151-172.
Kilic, B., Cassens, R. G., & Borchert, L. L. (2001). Influence of turkey meat on residual nitrite in cured meat products. Journal of Food Protection, 64(2), 235—239.
Kilic, B. 2001. Effect of microbial transglutaminase and sodium caseinate on quality of chicken döner kebab. Meat sci. 63:417—421.
Kimura, I., Sugimoto, M., Toyoda, K., Seki, N., Arai, K., and Fujita, T. 1991. A study on the cross-linking reaction of myosin in kamaboko suwari gels. Nippon Suisan Gakkaishi 57:1389-1396.
Kishi, H., Ngawa, H., and Seki, N. 1991. Reaction of muscle transglutaminase on carp myofibrils and myosin B. Nippon Suisan Gakkaishi 57:1203-1210.
Klein, J.D., Guzman, E., and Kuehn, G.D., 1992. Purification and partial characterization of transglutaminase from Physarum pholycephalum. J. Bacteriol. 174: 2599-2605.
Knorr, D., Bottcher, A., Dornenburg, H., Eshtiaghi, M. Oxen, P., Richwin, A. and Seyderhelm, I. High pressure effects on microorganism, enzyme activity and food functionality. In High Pressure Technology, Balny, C., Hayashi, R., Heremans, K., Masson, P., Eds., Colloque INSERM, John Libbey Eurotext Ltd. 1992. 224:211-218.
Ko, W.C. 1996. Effect of high pressure on gelation of meat paste and inactivation of actomyosin Ca-ATPase prepared from milkfish. Fisheries Sci. 62: 101-104.
Kumazawa, Y., Nakanishi, K., Yasueda., H., and Motoki, M. 1996. Purification and characterization of transglutaminase from walleye pollack liver. Fisheries Sci. 62: 959-964.
Kumazawa, Y., Seguro, K., Takamura, M., and Motoki, M. 1993a. Formation of ε-(γ-glutamyl) lysine cross-link in crude horse mackerel meat induced by drying. J. Food Sci. 58: 1086-1089.
Kumazawa, Y., Nakanishi, T., Seguro, K., Takamura, M. and Motoki, M. 1993b. Participation of transglutaminase in the manufacturing process of “kamaboko”. Paper no. 124A, presented at 53rd Annual Meeting of the Institute of Food technologists, Chicago, IL, July 10-14.
Kurth, L. and Rogers, P.J. 1984. Transglutaminase-catalyzed cross-linking of myosin to soya protein, casein and gluten. J. Food. Sci. 49: 573-576,589.
Lanier, T.C., Lin, T.S., Hamann, D.D., and Thomas, F.B. 1981. Effects of alkaline protease in minced fish on texture of heat-processed gels. J. Food Sci. 46:1643-1645.
Lanier, T.C., Manning, P.K., Zetterling, T. and MacDonald, G.A. 1992. Process innovations in surimi manufacture. Ch. 7 in Surimi Technology, T.C. Lanier and C.M. Lee (Ed.), p. 167-179. Marcel Dekker, Inc., New York.
Lee, N., Seki, N., Kato, N., Nakagawa, N., Terui, S., and Arai, K. 1990. Gel forming ability and cross-linking ability of myosin heavy chain in salted meat paste from threadfin bream. Nippon Suisan Gakkaishi 56: 329-336.
Lee, C. M. 1994. Surimi processing from lean fish. In " Seafoods: Chemistry, Processing Technology and Quality ", F. Shahidi and J. R. Botta (Ed.), pp. 263-287. Blackie Academic and Professional, London.
Lee, H.G. and Lanier, T.C. 1995. The role of covalent cross-linking in the texturizing of muscle protein sols. J. Muscle Foods 6:125-138.
Lee, H.G., Lanier, T.C., Hamann, D.D., and Knopp, J.A. 1997. Transglutaminase effect on low temperature gelation of fish protein sols. J. Food Sci. 62:20-24.
Lauber, S., Henle, T., and Klostermeyer, H. 2000. Stability of microbial transglutaminase to high pressure treatment. Eur. Food Res. Technol. 210:305—309.
Low, P. and Somero, G. 1975. Pressure effects on enzyme structure and function in vitro and under simulated in vivo conditions. Comp. Biochem. Physiol. 52B: 67-74.
Margosiak, S.A., Alavarets, M.E., Louie, D. and Kuhen, G.D. 1990. Identification of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase as a substrate for transglutaminase in Medicago sativa L. (alfalfa). Plant Physiol. 92:88-96.
Montero, P., Pérez-Mateos, M., and Solas, T. 1997. Comparison of different gelation methods using washed sardine (Sardina pilchardus) mince: effects of temperature and pressure. J. Agric. Food Chem. 45:4612-4618.
Motoki, M. and Seguro, K. 1998. Transglutaminase and its use for food processing. Trends Food Sci. Technol. 9: 204-217.
Morlid, E. The theory of pressure effects on enzyme. Adv. Protein Chem. 34: 93-166.
Morrissey, M.T., Wu, J.W., Lin, D., An, H., 1993. Proease inhibitor effects on torsion measurements and autolysis of Pacific whiting surimi. J. Food Sci. 58:1050-1054.
Motoki, M., Okiyama, A., Nonaka, M., Tanaka, H., Uchio, R., Matsura, A., Ando, H., and Umeda, K. 1989. Novel transglutaminase manufacture for preparation of protein gelling compounds. Jpn. Kokai Kokkyo Koho Jp 0127471.
Murakami, T., Kimura, I., Yamagishi, T., Yamashita, M., Sugimoto, M. and Satake, M. In High Pressure and Biotechnology, Balny, C., Hayashi, R., Heremans, K., Masson, P., Eds., Colloque INSERM, John Libbey Eurotext Ltd. 1992. 224: 329-331.
Nagashima, Y., Ebina, H., Tanaka, M., and Taguchi, T. 1993. Effect of High hydrostatic pressure on the thermal gelation of squid mantle meat. Food Res. Int. 26:119-123.
Nakagawa, T. 1978. “Rheology,” 2nd ed. The Iwanami Shoten, Co., Tokyo. Niwa, E. 1992. Chemistry of surimi gelation. In Surimi Technology, T. Lanier and C. Lee, (Ed.), Marcel Dekker, New York.
Nakahara, C., Nozawa, H., & Seki, N. (1999). A comparison of crosslinking of fish myofibrillar proteins by endogenous and microbial transglutaminase. Fisheries Science, 65, 138—144.
Nielsen, P.M. 1995. Reaction and potential industrial application of transglutaminase. Review of literature and patents. Food Biotechnol. 9:119-156.
Niwa, E., Nowsad, A. A., and Kanoh, S. 1991. Comparative studies on the physical parameters of kamabokos treated with the low temperature setting and high temperature setting. Nippon Suisan Gakkaishi 57: 105-109.
Niwa, E. 1992. Chemistry of surimi gelation. Ch. 16 in Surimi Technology, T.C. Lanier and C.M. Lee (Ed.), p. 167-179. Marcel Dekker, Inc., New York.
Nonaka, M., Ito, R., Sawa, A., Motoki, M. and Nio, N. 1997. Modification of several proteins by using Ca2+-independent microbial transglutaminase with high-pressure treatment. Food Hydrocoll. 11: 351-353.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1994a. Setting of transglutaminase-free actomyosin paste prepared from Alaska pollack surimi. Fisheries Sci. 60: 295-297.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1994b. Setting of surimi paste in which transglutaminase is inactivated by p-chloromercuribenzoate. Fisheries Sci. 60: 185-188.
Nowsad, A., Kanoh, S. and Niwa, E. 1995. Contribution of transglutaminase on the setting of various actomyosin pastes. Fisheries Sci. 61(1): 79-81.
Nowsad, A. AKM., Katoh, E., Kanoh, S., and Niwa, E. 1996. Contribution of transglutaminase to the setting of fish pastes at various temperatures. Fisheries Sci. 62: 94-97.
Ohshima, T., Ushio, H., and Koizumi, C. 1993. High pressure processing of fish and fish products. Trends Food Sci. Technol. 4: 1370-1375.
Pallavicini, C., Allogio, V. and Leonardis, A. D. 1992. Action of a transglutaminase from plant tissues on some milk proteins. Industrie Alimaentari 31(310):1130-1134.
Paul, P.C. and Palmer, H.H. 1972. Colloidal systems and emulsions. In “Food Theory and Applications” P.C. Paul and H.H. Palmer, eds., Chpt. 2. p.95. John Wiley and Sons, Ins., New York.
Peterson and Jonson. 1978. Rheology. Encyclopedia of food. p.633-670. AVI publishing Com., Inc.
Rao, M.A. and Steffe, J. F. 1992. Viscoelastic properties of food. Elsevier applied science. New York.
Reppond, K.D., Babbitt, J.K., Berntsen, S., and Tsuruta, M. 1995. Gel properties of surimi from pacific herring. J. Food Sci. 60:707-710, 714.
Ramanujam, M.V. and Hageman, J.H. 1990. Intracellular transglutaminase (EC 2.3.2.13) in a prokaryote: Evidence from vegetable and sporulating cells of Bacillus subtilis 168. FASEB J. 4: A3630.
Robinson, H. W., & Hodgen, C. G. (1940). The biuret reaction in the determination of serum protein.I. A study of the condition necessary for the production of the stable color which bears a quantitative relationship to the protein concentration. Journal of Biological Chemistry, 135, 707—725.
Roussel, H. and Cheftel, J.C. 1990. Mechanisms of gelation of sardine proteins: Influence of thermal processing and of various additives on the texture and protein solubility of kamaboko gels. Int. J. Food Sci. Technol. 25: 260~280.
Sakamoto, H., Kumazawa, Y., Toiguchi, S., Seguro, K., Soeda, T. and Motoki, M. 1995. Gel strength enhancement by addition of microbial transglutaminase during onshore surimi manufacture. J. Food. Sci. 60: 300-304.
Sareevoravitkul, R., Simpson, B.K., and Ramaswamy, H.S. 1996. Comparative properties of bluefish (Pomatomus saltatrix) gels formulated by high hydrostatic pressure and heat. J. Aquatic Food Product Technology 5:65-79.
Seguro, K., Kumazawa, Y., Ohtsuka, T., Toiguchi, S. and Motoki, M. 1995. Microbial transglutaminase and ε-(γ-glutamyl)lysine crosslink effects on elastic properties of kamaboko gels. J. Food Sci. 60:305-311.
Seki, N., Uno, H., Lee, N. H., Kimura, I., Toyoda, K., Fujita, T., and Arai, K. I. 1990. Transglutaminase activity in Alaska pollack muscle and surimi and its reaction with myosin B. Nippon Suisan Gakkaishi 56: 125-132.
Seki, K., Uno, H., Lei, N., Kimura, I., Toyoda, K., Fujita, T., and Arai, K. 1990. Transglutaminase activity in Alaska pollock muscle and surimi and its reaction with myosin B. Nippon Suisan Gakkaishi 56: 125-132.
Seki, N., Nakahara, C., Takeda, H., Maruyama, N., & Nozawa, H. (1998). Dimerization site of carp myosin heavy chain by the endogenous transglutaminase. Fisheries Science, 64, 314—319.
Seyderhelm, I., Boguslawski, S., Michaelis, G., and Knorr, D. 1996. Pressure induced inactivation of selected food enzymes. J. Food Sci. 61:308-310.
Shie, J.S. and Park, J.W. 1999. Physical characteristics of surimi seafood as affected by thermal processing conditions. J. Food Sci. 64:287-290.
Shimizu, K., 1981. Kamaboko no Ashi(ash of kamaboko). In Shokuhin no Bussei (Physiological properties of Foods), Y. Yamano (Ed.), p. 149-160. Shokuhin Shizai Kenkyukai Inc. Co., Tokyo.
Shimizu, Y. 1985. Biochemical and functional properties of material fish. In Proceeding''s of the Intl. Sym. on eng. Seafood Including Surimi. National Fish. Inst, Washington, D. C.
Shimizu, K., 1987. Gel Keiseinou (gel forming ability). Ch. 3 in Gyoniku Neri Seihin ( Fish Paste Products), M. Okada, T. Imaki, and M. Yokonobu (Ed.), p. 42-66. Kouseisha Kouseikaku, Tokyo.
Shoji, T., Saeki, H., Wakameda, A., and Nonaka, M. 1994. Influence of ammonium sulfate on the formation of pressure-induced gel from walleye pollock surimi. Nippon Suisan Gakkaishi 60:101-109.
Signorini, M., Beninati, S., and Bergamini, C.M. 1991. Identification of transglutaminase activity in the leaves of silver beet (Beta vulgaris L.) J. Plant Physiol. 137:547-552.
Sikorski, Z., Olley, J., and Kostuch, S. 1976. Protein changes in frozen fish. CRC Crit. Rev. Food. Sci. Nutr. 74:97-108.
Siu, N.-C., Ma, C.-Y., Mock, W.-Y., Mine. Y. 2002. Functional properties of oat globulin modified by a calcium-independent microbial transglutaminase. 50: 2666-2672.
Suvanich, V., Marshall, D.L., and Jahncke, M.L. 2000. Microbiological and color 1uality changes of channel catfish frame mince during chilled and frozen storage. J. Food Sci. 65:151-154.
Suzuki, C. The denaturation of protein under high pressureⅡ. The gelation of ovalbumin solution by pressure and by heat. The Rev. Phys. Chem. Japan. 1963. 33: 99-103.
Timson, W.J. and Short, A.J. 1965. Resistance of microorganisms to hydrostatic pressure. Biotechnol. Bioeng. 7:139-159.
Tseng, T. F., Liu, D. C. and Chen, M. T. 2000. Evaluation of transglutaminase on the quality of low-salt chicken meat-balls. Meat Science 55: 427- 431.
Tsukamasa, Y., Miyake, Y., Ando, Masashi and Makinodan, Yasuo. 2002. Total activity of transglutaminase at various temperature in several fish meats. Fish. Sci. 68: 929-933.
Urch, M. J., 1988. Fish and fish products. In Food Industries Manual, Ch. 2, M.D. Ranken (Ed.), p. 33-69. Blackie, Glasgow and London.
Wicker, L., Lanier, T.C., Hamann, D.D., and Alahane, T. 1986. Thermal transitions in myosin-ANS fluorescence and gel rigidity. J. Food Sci. 51: 1540-1543.
Wicker, L., Lanier, T.C., Knopp, J.A. and Hamann, D.D. 1989. Influence of various salts of heat-induced ANS fluorescence and gel rigidity development of tilapia (Serotherodon aureus) myosin. J. Agric. Food Chem. 37:18-22.
Wilson, D.C. 1974. High pressure sterilization. Presented at Annual Meeting, Inst. of Food Technologists, New Orleans. La., May 12-15.
Wu, M. C. 1992. Manufacture of surimi-products. In " Surimi Technology ", T. C. Lanier, and C. M. Lee (Ed.), pp. 245-272. Marcel Dekker, Inc., New York.
Xiong, Y.L. and Blanchard, S.P. 1994. Myofibrillar protein gelation: viscoelastic changes related to heating procedures. J. Food Sci. 59:734-738.
Yaseuda, H., Kumazawa, Y. and Motoki, M. 1994. Purification and characterization of a tissue type transglutaminase from red sea bream (Pagrus major). Biosci. Biotech. Biochem. 58:2041-2045.
小川浩史:柑橘類果汁への高壓の利用。食品と開發,24:50-53 (1989).
中原 勝:食品の壓力處理の基楚。食品と開發,25:3-7(1990).
田口武:水產品への高壓の利用。食品と開發,24:57-60(1989).
功刀滋:酵素反應における壓力の利用。食品と開發,25:3-7(1989).
朱文深:微生物轉穀氨醯胺酶之開發與應用。食品工業,30:30 -39 (1998).
朱文深:微生物轉穀氨醯胺酶。食品工業,35:22-31 (2003).
行政院農委會:水產加工研究計劃成果彙集(1989).
林力丸:生物相關連領域における高い壓力の利用-考え方と現況。蛋白質核酸酵素,34:119~123 (1989).
林力丸:調理加工殺菌、保藏への高壓利用の可能性。食品と開發,22:55-62(1987).
林欣榜:高壓食品科學。食品工業,25:54-60 (1993).
柯文慶:水產化學。p. 141. 國立中興大學教材,台中市(1991).
徐國強:吳郭魚肌肉蛋白質加壓凝膠機制之研究。國立中興大學食品科學研究所博士論文,台中市(2002).
徐國強:高壓常溫貯藏吳郭魚肌肉之鮮度保持與加工適性。國立中興大學食品科學研究所碩士論文,台中市(1997).
陳怡伶:吳郭魚、鱈魚及其混合魚漿之靜置促凝膠機制及品質改良。國立臺灣海洋大學碩士論文,基隆市(1998).
鈴木敦士:高壓處理による畜肉の特性コソトロール。食品と開發,25: 17-20(1990).
劉禧賢:豬血漿中Transglutaminase之分離及應用於肉製品製備之研究。東海大學食品科學研究所碩士論文,台中市(1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔