跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/02 11:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佳瑜
研究生(外文):Chia-Yu Lin
論文名稱:以逢機增殖多態性DNA指紋技術鑑定動物種別
論文名稱(外文):RAPD Fingerprinting for Species Identification of Animals
指導教授:黃木秋黃木秋引用關係
指導教授(外文):Mu-Chiou Huang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:畜產學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:逢機增殖多態性DNA禽類家畜種別鑑定
外文關鍵詞:RAPDfowlfarm animalspecies identification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
試驗一、禽類之種別鑑定
摘要
本試驗目的在進行禽類種別鑑定。供試驗動物包括12種禽類。以動物基因組DNA為模板,進行RAPD-PCR,依所產生的RAPD指紋態樣,篩選出具有種別特異性之片段,將之選殖入載體中,再進行DNA序列分析。並依據序列分析之結果設計出種別特異引子,以進行PCR,鑑定動物種別。試驗結果顯示,禽類之間RAPD指紋環帶差異甚大,但在同種動物(如來航雞、秀拔雞和土雞)間產生的RAPD指紋環帶相似。以OPAV-05、OPAA-10、OPAO-10、OPAV-13、OPAO-07及OPAV-19等逢機引子所增殖之RAPD指紋態樣,可選出鴕鳥、鴯鶓、雞、火雞、番鴨、鵝、鴿子等禽類種別特異片段,依其種別特異片段序列設計出鴕鳥OstrAV5SpeF3和OstrAV5SpeR2種別特異引子,僅可在鴕鳥增殖出295 bp種別特異片段;鴯鶓種別特異片段序列設計EmuAA10SpeF1和EmuAA10SpeR1種別特異引子,僅可在鴯鶓增殖出501 bp種別特異片段;以來航雞種別特異片段序列設計的LegAA10SpeF1和LegAA10SpeR1種別特異引子,會在來航雞、秀拔雞和土雞皆增殖出358 bp片段,但在火雞及其他禽類均不會產生環帶,故此引子具有雞種別特異性,可用來區分雞和火雞的種別。以火雞種別特異片段序列設計TurkAV19SpeF1和TurkAV19SpeR1種別特異引子,僅可在火雞增殖產生203 bp種別特異片段;以番鴨種別特異片段序列設計MuscAO10SpeF3和MuscAO10SpeR3種別特異引子,僅可在番鴨增殖出785 bp種別特異片段;以白羅曼鵝種別特異片段序列設計的WRomAO7SpeF1和WRomAO7SpeR1種別特異引子,只會在白羅曼鵝和中國鵝皆增殖出219 bp的片段,其他禽類皆無環帶產生;以鴿子種別特異片段序列設計PigeAV13SpeF1和PigeAV13SpeR1種別特異引子,僅可在鴿子產生150 bp種別特異片段。
試驗二、家畜之種別鑑定
摘要
本試驗目的在進行家畜種別鑑定。供試驗動物為12種家畜,動物基因組DNA為模板,進行RAPD-PCR,依所產生的RAPD指紋態樣,選出具有種別特異性之片段,將之選殖入載體中,再進行DNA序列分析。並依據序列分析之結果設計出種別特異性引子,進行PCR,鑑定動物種別。家畜所有產生的RAPD指紋態樣,於同種動物(如黃牛、荷蘭牛和安格斯牛)間的環帶皆很相似,甚至有時牛和羊所產生的RAPD指紋也有相似環帶出現,可能是因為這兩者同為反芻動物親屬關係極為密切;而豬、牛、羊彼此之間所產生RAPD指紋態樣有很大差異性。以OPAD-12、OPAO-19和OPAE-10逢機引子增殖RAPD指紋態樣,可選出黃牛、約克夏豬和土山羊種別特異片段設計種別特異引子。其中以黃牛種別特異序列設計的YcatAD12SpeF1和YcatAD12SpeR1引子增殖,僅會在牛(黃牛、水牛、荷蘭牛和安格斯牛)均增殖出619 bp的片段,在其他家畜如豬、羊則皆無環帶產生;以約克夏豬序列設計的YorkAO19SpeF1和YorkAO19SpeR1引子增殖,僅可在豬(杜洛克豬、藍瑞斯豬、約克夏豬和漢布夏豬)皆增殖出393 bp環帶,其他動物如牛、羊皆無環帶產生。以土山羊序列設計的NaGotAE10SpeF2和NaGotAE10SpeR2引子增殖,僅可在羊(杜色特綿羊、本土山羊、奴比亞山羊和乳用山羊)皆增殖出168 bp的環帶,在其他家畜如牛、豬皆無環帶產生。易言之,以上設計的種別特異引子,可用於牛、豬、羊等不同種動物之種別鑑定。

一、Species Identification of Fowls
Abstract
The studies were based on the RAPD fingerprinting for the species identification of fowls. There were 12 kinds of fowls being identified in this study. The genomic DNA samples of animals were employed as the templates to amplified with random primers by RAPD-PCR for fingerprinting. The species-specific fragments were isolated from gel and ligated into vector for nucleotide sequencing. Designed the species-specific primer on the basis of sequence analysis and performed PCR reaction to identify the species of animals. The results showed that the RAPD fingerprinting pattern of fowls revealed a significant diversity, but the RAPD fingerprinting band in the same species of fowls (such as Leghorn, Shaver and Native chicken) showed a highly similarity. Some species-specific fragments were represented in the RAPD fingerprints of ostrich, emu, turkey, Muscovy duck, goose and pigeon, which were amplified with OPAV-05, OPAA-10, OPAO-10, OPAV-13, OPAO-07 and OPAV-19 primers. Primers of OstrAV5SpeF3 and OstrAV5SpeR2 were designed according to the cloned species-specific sequence of ostrich, which were employed for PCR with the template DNA of fowls, a 295 bp species-specific band was found in ostrich only. With the design of the EmuAA10SpeF1 and EmuAA10SpeR1 species-specific primers from the species-specific sequence of emu, which were employed for PCR with the template DNA of fowls, a 501 bp species-specific band was found in emu only. With the design of the LegAA10SpeF1 and the LegAA10SpeR1 species-specific primers from the species-specific sequence of Leghorns, which were employed for PCR with the template DNA of fowls, a 358 bp species-specific band were found in Leghorns, Shavers, and Native chicken, but band wouldn’t be generated within turkeys and other fowls, so the primer had the chicken species-specific diversity to be distinguished between chickens and turkeys. Primers of TurkAV19SpeF1 and TurkAV19SpeR1 were designed according to the cloned species-specific sequence of turkey, which were employed for PCR with the template DNA of fowls, a 203 bp species-specific band was found in turkey only. Primers of MuscAO10SpeF3 and MuscAO10SpeR3 were designed according to the cloned species-specific sequence of Muscovy duck, which were employed for PCR with the template DNA of fowls, a 785 bp species-specific band was found in Muscovy duck only. Primers of WRomAO7SpeF1 and WRomAO7SpeR1 were designed according to the cloned species-specific sequence of White roman goose, which were employed for PCR with the template DNA of fowls, a 219 bp species-specific band were found in White roman goose and Chinese goose only. Primers of PigeAV13SpeF1 and PigeAV13SpeR1 were designed according to the cloned species-specific sequence of pigeon, which were employed for PCR with the template DNA of fowls, a 150 bp species-specific band was found in pigeon only.
二、Species Identification of Farm Animals
Abstract
The studies were based on the RAPD fingerprinting for the species identification of farm animals. There were 12 kinds of farm animals in this study. The genomic DNA samples of animals were employed as the templates to amplified with random primers by RAPD-PCR for fingerprinting. The species-specific fragments were isolated from gel and ligated into vector for nucleotide sequencing. Next, designed a species-specific primer on the base of DNA sequence analysis to proceed PCR reaction in order to identify the animal breed. The band was similar within the same species (such as Yellow cattle, Holstein cattle and Angus cattle) form the RAPD fingerprinting pattern of farm animals, even when the fingerprint pattern of cattle and sheep would generate a similar band, which was probably because these two species were close to each others’ ruminate relation. The RAPD fingerprint among pigs, cattle, and sheep had a major significant diversity. Some species-specific fragments were represented in the RAPD fingerprints of Yellow cattle, Yorkshire pig and Native goat, which were amplified with OPAD-12, OPAO-19 and OPAE-10 primers. Primers of YcatAD12SpeF1 and YcatAD12SpeR1 were designed according to the cloned species-specific sequence of Yellow cattle, which were employed for PCR with the template DNA of farm animals, a 619 bp species-specific band was found in cattle (Yellow cattle, Water buffalo, Holstein cattle, and Angus cattle) only. Primers of YorkAO19SpeF1 and YorkAO19SpeR1 were designed according to the cloned species-specific sequence of Yorkshire pig, which were employed for PCR with the template DNA of farm animals, a 393 bp species-specific band was found in pig (Duroc pig, Landrace pig, Yorkshire pig and Hampshire pig) only. Primers of NaGotAE10SpeF2 and NaGotAE10SpeR2 were designed according to the cloned species-specific sequence of Native goat, which were employed for PCR with the template DNA of farm animals, a 168 bp species-specific band were found in sheep and goat (Dorset sheep, Native goat, Nubian goat and Milk goat) only. In other word, those species-specific primer designs above are applied to species identification of different kinds of animals such as cattle, pigs, sheep and goat.

前言----------------------------------------------------------1
文獻檢討------------------------------------------------------3
一、利用蛋白質檢測進行禽畜種別鑑定----------------------------3
(一)免疫分析法----------------------------------------------3
1、瓊脂膠體免疫擴散法-----------------------------------------3
2、逆流免疫電泳法---------------------------------------------4
3、酵素聯結免疫分析法-----------------------------------------4
(二)電泳分析法----------------------------------------------6
1、等電聚焦電泳法---------------------------------------------6
2、SDS-PAGE --------------------------------------------------6
二、利用DNA之特異性進行禽畜種別鑑定---------------------------7
(一)限制片段長度多態性 -------------------------------------7
(二)DNA雜交法 ----------------------------------------------8
(三)逢機增殖多態性DNA---------------------------------------9
(四)特殊序列PCR增殖 ---------------------------------------11
1、粒線體DNA序列---------------------------------------------11
2、細胞色素b基因序列-----------------------------------------12
3、衛星DNA序列-----------------------------------------------12
4、α-cardiac actin基因序列-----------------------------------13
(五)限制片段長度多態性-聚合酶連鎖反應----------------------13
(六)序列分析-----------------------------------------------15
試驗一、禽類種別鑑定-----------------------------------------16
一、摘要-----------------------------------------------------17
二、材料與方法-----------------------------------------------18
三、結果與討論-----------------------------------------------31
(一)鴕鳥---------------------------------------------------36
(二)鴯鶓---------------------------------------------------44
(三)雞-----------------------------------------------------52
(四)火雞---------------------------------------------------57
(五)番鴨---------------------------------------------------64
(六)鵝-----------------------------------------------------76
(七)鴿子---------------------------------------------------86
四、結論-----------------------------------------------------93
五、英文摘要-------------------------------------------------98
試驗二、家畜種別鑑定-----------------------------------------99
一、摘要----------------------------------------------------100
二、材料與方法----------------------------------------------101
三、結果與討論----------------------------------------------109
(一)牛----------------------------------------------------120
(二)豬----------------------------------------------------128
(三)羊----------------------------------------------------140
四、結論----------------------------------------------------151
五、英文摘要------------------------------------------------155
參考文獻----------------------------------------------------156
附錄--------------------------------------------------------165

Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D.
Watson. 1990. Molekularbiologie der Zelle. VCH
Verlagsgesellschaft: Weinheim.
An, H., M. R. Marshall, W. S. Otwell, and C. I. Wei. 1988.
Electrophoretic identification of raw and cooked shrimp
using various protein extraction systems. J. Food Sci.
53:313-318.
Andrews, C. D., R. G. Berger, R. P. Mageau, B. Schwab, and R.
W. Johnston. 1992. Detection of beef, sheep, deer and horse
meat in cooked meat products by enzyme-linked immunosorbent
assay. J. Assoc. Off. Anal. Chem. 75:572-576.
Anguita, G., R. Martin, T. Garcia, P. Morales, I. Haza, I.
Gonzalez, B. Sanz, and P. E. Hernandez. 1995. Indirect
ELISA for detection of cow’s milk in ewes’ and goats’
milks using a monoclonal antibody against bovine β-casein.
J. Dairy Res. 62:655-659.
Appa Rao, K. B. C., K. V. Bhat, and S. M. Totey. 1996.
Detection of species-specific genetic markers in farm
animals through random amplified polymorphic DNA (RAPD).
Genetic analysis: Biomolecular Engineering 13:135-138.
Bania, J., M. Ugorski, A. Polanowski, and E. Adamczyk. 2001.
Application of polymerase chain reaction for detection of
goats’ milk adulteration by milk of cow. J. Dairy Res.
68:333-336.
Barai, B. K., R. R. Nayak, R. S. Singhal, and P. R. Kulkarni.
1992. Approaches to the detection of meat adulteration.
Trends Food Sci. Technol. 3:69-72.
Bellagamba, F., V. M. Moretti, S. Comincini, and F. Valfre.
2001. Identification of species in animal feedstuffs by
polymerase chain reaction-restriction fragment length
polymorphism analysis of mitochondrial DNA. J. Agric. Food
Chem. 49:3775-3781.
Bello, N., and A. Sanchez. 1999. The identification of a sex-
specific DNA marker in the ostrich using a random amplified
polymorphic DNA (RAPD) assay. Mol. Ecol. 8:667-669.
Berger, R. G., R. P. Mageau, B. Schwab, and R. W. Johnston.
1988. Detection of poultry and pork in cooked and canned
meat foods by enzyme-linked immunosorbent assays. J. Assoc.
Off. Anal. Chem. 71:406-409.
Botstein, D. R. W., M. Skolnick, and R. Davies. 1980.
Construction of genetic linkage map in man using
restriction fragment length polymorphisms. Am. J. Hum.
Genet. 32:314-331.
Brown, J. R., A. T. Beckenbach, and M. J. Smith. 1993.
Intraspecific DNA sequence variation of the mitochondrial
control region of white sturgeon (Acipenser transmontanus).
Mol. Biol. Evol. 10:326-342.
Brown, J. R., K. Beckenbach, A. T. Beckenbach, and M. J. Smith.
1996. Length variation, heteroplasmy and sequence
divergence in the mitochondrial DNA of four species of
sturgeon (Acipenser). Genetics 142:525-535.
Casa, C., J., P. Tormo, E. Hernandez, and B. Sanz. 1985. The
detection and partial characterization of horse muscle
soluble proteins by immunoelectrophoresis in agarose gels.
Meat Sci. 12:31-37
Chikuni, K., K. Ozutsumi, T. Koishikawa, and S. Kato. 1990.
Species identification of cooked meats by DNA hybridization
assay. Meat Sci. 27:119-128.
Chikuni, K., T. Tabata, M. Kosugiyama, M. Monma, and M. Saito.
1994a. Polymerase chain reaction assay for detection of
sheep and goat meats. Meat Sci. 37:337-345.
Chikuni, K., T. Tabata, M. Saito, and M. Monma. 1994b.
Sequencing of mitochondrial cytochrome b genes for the
identification of meat species. Anim. Sci. Technol. (Jpn)
65:571-579.
Claeys, E., L. Uytterhaegen, B. Buts, and D. Demeyer. 1995.
Quantification of beef myofibrillar proteins by SDS-PAGE.
Meat Sci. 39:177-193.
Ebbehoj, K. F., and P. D. Thomsen. 1991a. Species
differentiation of heated meat products by DNA
hybridization. Meat Sci. 30:221-234.
Ebbehoj, K. F., and P. D. Thomsen. 1991b. Differentiation of
closely related species by DNA hybridization. Meat Sci.
30:359-366.
Fairbrother, K. S., A. J. Hopwood, A. K. Lockley, and R. G.
Bardsley. 1998. Meat speciation by restriction fragment
length polymorphism analysis using an α-actin cDNA probe.
Meat Sci. 50:105-114.
Fei, S., T. Okayama, M. Yamanoue, I. Nishikawa, H. Mannen, and
S. Tsuji. 1996. Species identification of meats and meat
products by PCR. Anim. Sci. Technol. (Jpn) 67:900-905.
Garcia, T., R. Martin, E. Rodriguez, J. I. Azcona, B. Sanz, and
P. E. Hernandez. 1991. Detection of bovine milk in ovine
milk by a sandwich enzyme-linked immunosorbent assay
(ELISA). J. Food Prot. 54:366-369.
Hayden, A. R. 1979. Immunochemical detection of ovine, porcine
and equine flesh in beef products with antisera to species
myoglobin. J. Food Sci. 44:494-500.
Hayden, A. R. 1981. Use of antisera to heat-stable antigens of
adrenals for species identification in thoroughly cooked
beef sausages. J. Food Sci. 46:1810-1813.
Hayashi, J. I., and M. J. V. D. Walle. 1985. Absence of
extensive recombination between inter and intraspecies
mitochondrial DNA in mammalian cells. Exp. Cell Res.
160:387-395.
Hedges, S. B., K. D. Moberg, and L. R. Maxsoh. 1990. Tetrapod
phylogeny in ferred from 18s and 28s ribosomal RNA
sequences and a review of the evidence for amniote
relationships. Mol. Biol. Evol. 7:607-633.
Hitchcock, C. H. S., and A. A. Crimes. 1985. Methodolgy for
meat species identification: A review. Meat Sci. 15:215-224.
Hsieh, Y. H. P., S. C. Sheu, and R. C. Bridgman. 1998.
Development of a monoclonal antibody specific to cooked
mammalian meats. J. Food Prot. 61:476-481.
Hsieh, H. M., H. L. Chiang, L. C. Tsai, S. Y. Lai, N. E. Huang,
A. Linacre, and J. C. Lee. 2001. Cytochrome b gene for
species identification of the conservation animals.
Forensic Sci. Int. 122:7-18.
Hopwood, A. J., K. S. Fairbrother, A. K. Lockley, and R. G.
Bardsley. 1999. An actin gene-related polymerase chain
reaction (PCR) test for identification of chicken in meat
mixtures. Meat Sci. 53:227-231.
Horng, Y. M., and M. C. Huang. 1999. Comparison between RAPD
and RAMPO fingerprints of Holstein cattle. J. Agri. Assoc.
China. 186:134-143.
Horng, Y. M., and M. C. Huang. 2003. Male-specific DNA
sequences in pigs. Theriogenology 59:841-848.
Huang, M. C., Y. M. Horng, H. L. Huang, Y. L. Sin, and M. J.
Chen. 2003a. RAPD fingerprinting for the species
idnetification of animals. Asian-Aust. J. Anim. Sci.
16:1406-1410.
Huang, M. C., W. C. Lin, Y. M. Horng, R. Rouvier, and C. W.
Huang. 2003b. Female-specific DNA sequences in geese. Br.
Poult. Sci. 44:1-6.
Hunt, D. J., H. C. Parkes, and I. D. Lumley. 1997.
Identification of the species of origin of raw and cooked
meat products using oligonucleotide probes. Food Chem.
60:437-442.
Irwin, D. M., T. D. Kocher, and A. C. Wilson. 1991. Evolution
of the cytochrome b gene of mammals. J. Mol. Evol. 32:128-
144.
Jacquient, P., J. F. Humbert, A. M. comes, J. Cabaret, A.
Thiam, and D. Cheikh. 1995. Ecological, morphological and
genetic characterization of sympatric Haemonchus spp.
parasites of domestic ruminants in Mauritania. Parasitology
110:483-492.
Jones, S. J., and R. L. S. Patterson. 1985. Double antibody
ELISA for detection of trace amounts of pig meat in raw
meat mixtures. Meat Sci. 15:1-13.
Kang′ethe, E. K., S. J. Jones, and R. L. S. Patterson. 1982.
Identification of the species origin of fresh meat using an
enzyme-linked immunosorbent assay procedure. Meat Sci.
7:229-240.
Kang′ethe, E. K., and J. M. Gathuma. 1987. Species
identification of autoclaved meat samples using antisera to
thermostable muscle antigens in an enzyme immunoassay. Meat
Sci. 19:265-270.
Kashi, Y., E. Lipkin, A. Darvasi, A. Nave, Y. G. Ruenbaum, J.
S. Beckman, and M. Soller. 1990. Parentage identification
in the bovine using “Deoxyribonucleic acid fingerprints”.
J. Dairy Sci. 73:3306-3311.
Kim, H., and L. A. Shelef. 1986. Characterization and
identification of raw beef, pork, chicken and turkey meats
by electrophoretic patterns of their sarcoplasmic proteins.
J. Food Sci. 51:731-741.
King, N. L. 1984. Species identification of cooked meats by
enzyme-staining of isoelectric focusing gels. Meat Sci.
11:59-72.
Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S.
Päabo, F. X. Villablanca, and A. C. Wilson. 1989. Dynamics
of mitochondrial DNA evolution in mammals: amplification
and sequencing with conserved primers. Proc. Natl. Acad.
Sci. U.S.A. 86:6196-6200.
Koh, M. C., C. H. Lim, S. B. Chua, S. T. Chew, and S. T. W.
Phang. 1998. Random amplified polymorphic DNA (RAPD)
fingerprints for identification of red meat animal species.
Meat Sci. 48:275-285.
Köhler, G., and C. Milstein. 1975. Continuous culture of fused
cells secreting antibody of predefined specificity. Nature 256:495-497.
Lahiff, S. M. Glennon, L. O’Brien, J. Lyng, T. Smith, M.
Maher, and N. Shilton. 2001. Species-Specific PCR for the
identification of ovine, porcine and chicken species in
meat and bone meal (MBM). Molecular and Cellular Probes
15:27-35.
Lansman, R. A., J. C. Avise, and M. D. Huettel. 1983. Critical
experimental test of the possibility of “paternal
leakage” of mitochondrial DNA. Proc. Natl. Acad. Sci. USA
80:1969-1971.
Levieux, D., and A. Venien. 1994. Rapid, sensitive two-site
ELISA for detection of cows’ milk in goats’ or ewes’
milk using monoclonal antibodies. J. Dairy Res. 61:91-99.
Lockley, A. K., and R. G. Bardsley. 2002. Intron variability in
an actin gene can be used to discriminate between chicken
and turkey DNA. Meat Sci. 61:163-168.
Loreille, O., J. D. Vigne, C. Hardy, C. Callou, C. F. Treinen,
N. Dennebouy, and M. Monnerot. 1997. First distinction of
sheep and goat archaeological bones by means of their
fossil mtDNA. J. Archaeol. Sci. 24:33-37.
Mageau, R. P. 1991. Use of DTEK Immunostick ELISA screen test
kit for animal species identification of raw meat and
poultry products. Lab. Commun. 71:1-9.
Martin, R., J. I. Azcona, T. Garcia, P. E. Hemandez, and B.
Sanz. 1988. Sandwich ELISA for detection of horse meat in
raw meat mixtures using antisera to muscle soluble
proteins. Meat Sci. 22:143-153.
Martinez, I., E. O. Elvevoll, and T. Haug. 1997. RAPD typing of
north-east Atlantic minke whale (Balaenoptera
acutorostrata). ICES J. Mar. Sci. 54:478-484.
Martinez, I., and I. M. Yman. 1998. Species identification in
meat products by RAPD analysis. Food Res. Int. 31:459-466.
Matsunaga, T., K. Chikuni, R. Tanabe, S. Muroya, K. Shibata, J.
Yamada, and Y. Shinmura. 1999. A quick and simple method
for the identification of meat species and meat products by
PCR assay. Meat Sci. 51:143-148.
Meyer, R., C. Hofelein., J. Luthy, and U. Candrian. 1995.
Polymerase chain reaction-restriction fragment length
polymorphism analysis: A simple method for species
identification in food. J. AOAC Int. 78:1542-1551.
Mullis, K. B., F. A. Faloona, S. J. Scharf, R. K. Saiki, G. T.
Horn, and H. A. Erlich. 1986. Specific enzymatic
amplification of DNA in vitro: The polymerase chain
reaction. Quant. Biol. 51:263-273.
Newman, M. E., J. S. Parboosingh, P. J. Bridge, and H. Ceri.
2002. Identification of archaeological animal bone by
PCR/DNA analysis. J. Archaeol. Sci. 29:77-84.
Partis, L., D. Croan, Z. Guo, R. Clark, T. Coldham, and J.
Murby. 2000. Evaluation of a DNA fingerprinting method for
determining the species origin of meats. Meat Sci. 54:369-
376.
Patterson, R. M., and T. L. Spencer. 1985. Differentiation of
raw meat from phylogenetically related species by an enzyme-
linked immunosorbent assay. Meat Sci. 15:119-123.
Patterson, R. L. S., and S. J. Jones. 1990. Review of current
techniques for the verification of the species origin of
meat. Analyst. 115:501-506.
Plotsky, Y., M. G. Kaiser, and S. J. Lamont. 1995. Genetic
characterization of highly and polymerase chain reaction
using arbitrary primers. Anim. Genet. 26:163-174.
Rodriguez, E., R. Martin, T. Garcia, I. Gonzalez, P. Morales,
B. Sanz, and P. E. Hernandez. 1993. Detection of cow’s
milk in ewe’s milk and cheese by a sandwich enzyme-linked
immunosorvent assay (ELISA). J. Sci. Food Agric. 61:175-180.
Rolland, M. P., L. Bitri, and P. Besancon. 1993. Polyclonal
antibodies with predetermined specificity against bovine α
s2-casein: application to the detection of bovine milk in
ovine milk and cheese. J. Dairy Res. 60:413-420.
Samarajeewa, U., C. I. Wei, T. S. Huang, and M. R. Marshall.
1991. Application of immunoassay in the food industry. Food
Sci. Nutr. 29:403-434.
Slattery, W. J., and A. J. Sinclair. 1983. Differentiation of
meat according to species by the electrophoretic separation
of muscle lactate dehydrogenase and esterase isoenzymes and
isoelectric focusing of soluble muscle proteins. Aust. Vet.
J. 60:47-51.
Smith, E. J., C. P. Jones, J. Bartlett, and K. Nestor. 1996.
Use of randomly amplified polymorphic DNA markers for the
genetic analysis of relatedness and diversity in chickens
and turkeys. Poultry Sci. 75:579-584.
Swart, K. S., and C. K. Wilks. 1982. An immunodiffusion method
for the identification of the species of origin of meat
samples. Aust. Vet. J. 59:21-22.
Vawter, L., and W. M. Brown. 1986. Nuclear and mitochondrial
DNA comparisons reveal extreme rate variation in the
molecular clock. Science 234:194-196.
Welsh, J., and M. McClelland. 1990. Fingerprinting genomes
using PCR with arbitrary primers. Nucleic Acids Res.
18:7213-7218.
Welsh, J., R. J. Honeycutt, M. McClelland, and B. W. S. Sobral.
1991. Parentage determination in maize hybrids using the
arbitrarily primed polymerase chain reaction (AP-PCR).
Theor. Appl. Genet. 82:473-476.
Whittaker, R. G., T. L. Spencer, and J. W. Copland. 1983. An
enzyme-linked immunosorbent assay for species
identification of raw meat. J. Sci. Food Agric. 34:1143-
1148.
Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski,
and S. V. Tingey. 1990. DNA polymorphisms amplified by
arbitrary primers are useful as genetic markers. Nucleic
Acids Res. 18:6531-6535.
Williams, J. G., M. K. Hanafey, J. A. Rafalski, and S. V.
Tingey. 1993. Genetic analysis using random amplified
polymorphic DNA markers. Methods Enzymol. 218:704-740.
Winterø, A. K., P. D. Thomsen, and W. Davies. 1990. A
comparison of DNA-hybridization, immunodiffusion,
countercurrent immunoelectrophoresis and isoelectric
focusing for detecting the admixture of pork to beef. Meat
Sci. 27:75-85.
Wolf, C., J. Rentsch, and P. Hubner. 1999. PCR-RFLP analysis of
mitochondrial DNA: A reliable method for species
identification. J. Agric. Food Chem. 47:1350-1355.
Zehner, R., S. Zimmermann, and D. Mebs. 1998. RFLP and sequence
analysis of the cytochrome b gene of selected animals and
man: Methodology and forensic application. Int. J. Legal.
Med. 111:323-327.
Zerifi, A., Ch. Labie, and G. Benard. 1991. SDS-PAGE technique
for the species identification of cooked meat.
Fleischwirtsch 71:1060-1062.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top