跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳庭柔
研究生(外文):Ting-Rou Chen
論文名稱:BacilluslicheniformisCCRC14353和BacilluslicheniformisCCRC11594之粗酵素對雞羽毛水解效果之評估
論文名稱(外文):The Evaluation of Hydrolysis of Chicken Feather with Raw Enzyme from Bacillus licheniformis CCRC 14353 and Bacillus licheniformis CCRC 11594
指導教授:劉登城 
指導教授(外文):Deng-Cheng Liu, Ph. D.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:畜產學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:117
中文關鍵詞:Bacillus licheniformis雞羽毛
相關次數:
  • 被引用被引用:4
  • 點閱點閱:517
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
壹、中文摘要
羽毛含90 %以上之角蛋白,而角蛋白因為含硫胺基酸與α螺旋之間複雜的交叉鍵結,使其結構間的鍵結相當穩固,不易為一般蛋白質水解酵素所破壞。本試驗利用Bacillus. licheniformis CCRC 14353和Bacillus. licheniformis CCRC 11594為試驗菌株,測試此二菌株之生長特性並進一步利用其分泌之粗酵素進行羽毛水解試驗,以評估其利用性。
實驗結果顯示在生長特性方面:B. licheniformis CCRC 14353和 B. licheniformis CCRC 11594之菌數於培養的第96小時達最高量,分別為8.94和9.06 log CFU / mL,隨後開始下降,而其酵素活性則隨著菌體的生長而上升,尤其在培養後第132小時達最佳酵素活性,兩者分別為2.14和1.74 unit / mL。培養後第24小時兩者之溶液pH值皆有些微下降之現象,培養至第96小時期間,pH隨培養時間的增加而上升,而培養150小時後其溶液pH分別為pH 7.21和7.29。SDS-PAGE顯示,兩者之粗酵素在30 kDa及31 kDa處有蛋白質之環帶。
CCRC 14353酵素活性之最適pH為pH 7及pH 11,分別為30.59及30.48 unit / g protein;而CCRC 11594之最適pH亦為pH 7及pH 11,酵素活性分別為45.3及42.9 unit / g protein。CCRC 14353酵素最適活性溫度為70℃,為35.12 unit / g protein;而CCRC 11594粗酵素之最適溫度60℃,為65.71 unit / g protein;CCRC 14353酵素對溫度之敏感度較CCRC 11594者為低。
CCRC 143534及CCRC 11594之粗酵素對羽毛水解144小時後,其溶液中之總氮含量皆有顯著的增加;CCRC 11594水解羽毛後之溶液中總氮量較CCRC 14353高;預先經高溫高壓處理之羽毛,水解效果較未處理者佳;pH 11對經高溫高壓處理之1 %羽毛水解效果具有更大之助益。CCRC 143534及CCRC 1159之粗酵素於pH 7溶液中水解羽毛,其溶液pH僅在水解後第24小時呈下降現象,之後隨著時間增加而上升,而於pH 11中作用時,則是隨水解時間的增加,而有下降之現象,但仍保持在鹼性狀態;而經高溫高壓處理過之組別在相同初始pH作用環境水解144小時過程中,其溶液中之pH值皆較未經處理組別之pH值高。兩者之粗酵素於pH 11中水解羽毛144小時之羽毛損失重量皆較pH 7者為高;經高溫高壓處理之羽毛於水解期間之損失重量較未經處理者高,且以1 %組別之羽毛損失重量最為明顯;CCRC 11594處理組別之羽毛損失重量較CCRC 14353者高。
羽毛表面在經過粗酵素分解處理後,皆較處理前有顯著被破壞之現象,尤以預先經高溫高壓處理之羽毛較易為酵素所分解,且以CCRC 11594之效果較CCRC 14353者佳。高溫高壓處理之羽毛經CCRC 14353及CCRC 11594粗酵素水解後,其外觀已看不到羽毛完整的結構,且羽毛溶液的濁度亦明顯升高。
捌、英文摘要
The Evaluation of Hydrolysis of Chicken Feather with Raw Enzyme from Bacillus licheniformis CCRC 14353 and Bacillus licheniformis CCRC 11594
Ting-Rou Chen
Abstract
Feathers composed of over 90% protein, the main component being keratin, a α-helix and the sulfide amino acid highly cross-linked interaction results in mechanical stability and resistance to proteolyses. The objective of the present study was to evaluate the efficiency of enzymes from Bacillus licheniformis CCRC 14353 and Bacillus licheniformis CCRC 11594 for hydrolyses of chicken feather.
  The results were as the following : the CFU of B. licheniformis CCRC 14353 and B. licheniformis CCRC 11594 reached the maximum value (8.94 and 9.06 log CFU/mL) for 96 hrs of incubation, respectively. The enzyme activity of the bacteria strains increased with increasing of growth curve, and reached the maximum values which were 1.74 and 2.14 unit/mL for 132 hrs of incubation, respectively. The pH of two bacteria strains were slightly decreased when incubated for 24 hrs, but rose later until incubated for 150 hrs, the pH were 7.21 and 7.29 when determined at the end time in this research, respectively. SDS-PAGE analysis of the raw enzyme from the two bacteria strains revealed that the 30 kDa and 31 kDa protein can be detected. The optimum pH of enzyme activity of CCRC 14353 was pH 7 and pH 11, and the enzyme activity was 30.59 and 30.48 units/g protein, respectively; The optimum pH of enzyme activity of CCRC 11594 was pH 7 and pH 11, and the enzyme activity was 45.3 and 42.9 units/g protein, respectively. The optimum temperatures of enzyme activity of CCRC 14353 and CCRC 11594 were 70 and 60℃, and the enzyme activity was 35.12 and 65.71 units/g protein, individually.
After the raw enzymes of CCRC 143534 and CCRC 11594 hydrolyzed chicken feather for 144 hrs, the total nitrogen content was significantly increased in solution when compared to the initial (0 hr); as well as the total nitrogen content of CCRC 11594 was higher than that of CCRC 14353. The hydrolyzing efficiency of chicken feather treated by high temperature and high pressure was higher than the control. The raw enzymes of CCRC 143534 and CCRC 11594 were used to hydrolyze chicken feather in pH 7 solution, the pH were decreased after hydrolyzing for 24 hrs, and then increased with time. However, the pH of the same treatments in pH 11 solution was decreased with time, and maintained an alkalinity condition during hydrolysis. The loss percentage of chicken feather treated by both raw enzymes in pH 11 solution for 144 hrs were higher than those in pH 7 solution. The loss percentage of chicken feather treated by high temperature and high pressure was higher than the samples without treatment, especially in 1 % feather lot; The loss percentage of chicken feather by raw enzyme of CCRC 11594 was significantly more than that of CCRC 14353. In SEM observation, some chicks and broken particles were found on the surface of chicken feather barbs treated by raw enzymes from the two bacteria strains. Moreover, a distinctly more checks and broken particles were observed when chicken feather per treated by high temperature and pressure then treated by raw enzymes from the two bacteria strains. The appearance of chicken feathers were broken down and resulted in a high turbidity solution when they were treated by raw enzymes from the two bacteria strains for 144 hrs.
Overall, conclusion chicken feather treated by raw enzymes from CCRC 11594 had better hydrolysis efficiency than CCRC 14353. On the other hand, a synergism was found when chicken feather per-treated by high temperature and pressure then treated by raw enzymes.
目錄            頁次
壹、中文摘要……..………………………………………………………1
貳、前言……………………………………………………………………3
參、文獻檢討………………………………………………………………5
一、羽毛與角蛋白之結構及特性…………………………………………5
(一)羽毛的結構…………………………………………………………5
(二)角蛋白的結構與特性………………………………………………9
二、角蛋白酶之介紹………………………………………………………12
(一)鹼性蛋白酶之一般特性……………………………………………13
1.最適pH及溫度……………………………………………………………13
2.分子量……………………………………………………………………13
3.金屬離子及抑制劑………………………………………………………13
4.基質特異性………………………………………………………………13
(二)蛋白酶之應用…………………………………………………………15
1清潔劑………………………………………………………………………15
2.製革業……………………………………………………………………16
3.銀回收……………………………………………………………………16
4.醫藥界……………………………………………………………………17
5.食品業……………………………………………………………………17
6.廢棄物處理………………………………………………………………18
7.其他………………………………………………………………………19
三、微生物對角蛋白的降解………………………………………………20
(一)角蛋白降解後之營養價值…………………………………………20
(二)微生物對角蛋白降解之理論………………………………………20
1.角蛋白結構之破壞………………………………………………………20
2.角蛋白雙硫鍵的裂解……………………………………………………22
四、角蛋白酶之應用………………………………………………………23
五、Bacillus licheniformis PWD-1對雞毛分解之研究………………28
六、羽毛之處理及應用……………………………………………………30
肆、材料與方法……………………………………………………………38
一、試驗材料………………………………………………………………38
二、試驗方法………………………………………………………………40
(一) B. licheniformis CCRC 14353及B. licheniformis
CCRC 11594之生長特性分析………………………………………………40
(1)總生菌數之測定……….……………………………………………40
(2)pH值測定……………..………………………………………………41
(3)蛋白酶活性之測定……….…………………………………………41
(4)SDS-PAGE電泳分析…..………………………………………………43
(二)B. licheniformis CCRC 14353及B. licheniformis
CCRC 11594粗酵素對羽毛水解效果之評估………………………………46
(1)總氮含量………………………………………………………………46
(2)羽毛損失重量百分比…………………………………………………48
(3)羽毛之顯微構造………………………………………………………48
三、統計分析………………………………………………………………48
伍、結果與討論……………………………………………………………49
一、B. licheniformis CCRC 14353及B. licheniformis
CCRC 11594培養期間之生長特性…………………………………………49
(一)培養期間微生物生長曲線……………………………………………49
(二)培養期間酵素活性之變化…………………………………………49
(三)培養期間溶液pH值之變化…………………………………………51
(四)粗酵素液之SDS-PAGE分析…………………………………………54
二、B. licheniformis CCRC 14353及B. licheniformis
CCRC 11594粗酵素活性之最佳pH及溫度條件……………………………56
(一)最適作用pH…………………………………………………………56
(二)最適作用溫度………………………………………………………57
三、B. licheniformis CCRC 14353及B. licheniformis
CCRC 11594粗酵素對羽毛水解效果之評估………………………………62
(一)分解液中總氮量……………………………………………………62
(二)溶液pH變化…………………………………………………………69
(三)羽毛損失重量百分…………………………………………………76
(四)羽毛水解後顯微構造之分析………………………………………83
(五)水解後之外觀變化…………………………………………………86
陸、結論……………………………………………………………………87
柒、參考文獻………………………………………………………………90
捌、英文摘要………………………………………………………………107
柒、參考文獻
胡介卿、洪玲芳、吳海龍、唐祥甯、郭國梁、趙和璋、張斌。1995。角蛋白分解菌的分離選育、角蛋白酶提取及其應用的研究。江西農業大學學報17:340-344。
高必成、沈明泉。1995。膨化羽毛粉作盆菊底肥的試驗13:155-156。
陶立、李呂木。1994。羽毛粉飼用研究進展。安徽農業科學22:114-116。
黃裕斌、姚富洲、許晉錐、佟穎生、歐馨婷、蘇名儀譯。2003。生物化學原理。171-172。合記圖書出版社。台北市。
塗國全、黎開金、王睿勇、葉亞健、張宏玉、於靜。1994。羽毛角蛋白分解菌的富集培養和分離篩選。江西農業大學學報16:66-73。
劉曉霞、郭曉輝。2001。膨化羽毛粉飼喂肉鴨試驗。獸醫與飼料添加劑2:5-6。
胡介卿、王萍、劉新平。1998。酶解羽毛粉餵飼啄羽癖蛋雞效應試驗。江西畜牧獸醫志2:14。
王方國。1993。羽毛粉及其在畜禽飼料中作用的研究。科學試驗與研究3:2-4。
龐會忠。1998。過氧乙酸分解羽毛角蛋白質效果的研究。中國飼料. 6:27-28。
劉雪蘭、謝幼梅。1999。羽毛粉的營養價值及加工利用。山東畜牧獸醫6:31-32。
陸建安、袁信隼、張曉鳴、陸軍。1995。高壓水解羽毛粉新工藝的研究。糧食與飼料工業8:12-14。
趙曉芳。2002。羽毛粉的加工利用。廣東飼料11:13-14。
楊景培、彭國良、蘇堰、李玉隼。1995。水解羽毛粉飼養肉豬試驗。廣東畜牧獸醫科技20:10-11。
Adler-Nissen, J. 1986. Enzymatic hydrolysis of food proteins. Elselier Applied Science Pub. London and New York. 19-20.
Al-Asheh, S., F. Banat and D. Al-Rousan. 2003. Beneficial reuse of chicken feathers in removal of heavy metals from wastewater. Journal of Cleaner Production. 11:321-326.
American Academy of Pediatrics Committee on Nutrition. Hypoallergenic infant formulas. Pediatrics. 83:1068-1069.
A.O.A.C. 1990. Official Methods of analysis. 15th ed. Association of Official Analytical Chemist. Virginia, U. S. A.
Atalo, K. and B. A. Gashe. 1993. Protease production by a thermophilic Bacillus species (P-001A) which degrades various kinds of fibrous proteins. Biotech. Lett. 15:1151-1156.
Bailey, P. and J. Bailey. 1981. Organic chemistry, 2nd edn. Allyn. and Bacon, Boston.
Baker, D. H., R. C. Blithenthal, K. P. Boebel, G. L. Czamecki, L. L. Southern and G. M. Willis. 1981. Protein-amino acid evaluation of steam-processed feather meal. Poultry Sci. 60:1865-1872.
Barthomeuf, C., H. Pourrat and A. Pourrat. 1992. Collagenolytic activity of a new semi-alkaline protease from Aspergillus niger. J. Ferment. Bioeng. 73:233-236.
Bhuyan, B. K., A. Dietz and C. G. Smith. 1961. Pactamycin, a new antitumor antibiotic. I. Discovery and biological properties, Antimicrob. Agents Chemother. 19:184-190.
Bielorai, R., Z. Harduf, B. Iosif and E. Alumot. 1983. Apparent amino acid absorption from feather meal by chicks. Br. J. Nutr. 49:395-399.
Böckle, B. and R. Müller. 1997. Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feather. Appl. Environ. Microbiol. 63:790-795.
Böckle, B., B. Galunsky and R. Müller. 1995. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl. Environ. Microbiol. 61:3705-3710.
Bressollier, P. F. Letourneau, M. Urdaci and B. Verneuil. 1999. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl. Environ. Microbiol. 65: 2570-2576.
Chandrasekaran, S. and S. C. Dhar. 1986. Utilization of multiple proteinase concentrate to improve the nutritive value of chicken feather meal. J. Leather Res. 4:23-30.
Chen, S. T., S. C. H. and K. T. Wang. 1991. Stable industrial protease catalysed peptide bond formation in organic solvent. Bioorg. Med. Chem. Lett. 1:445-450.
Cheng, S. W. H. M. H., S. W. Shen, H. Takagi, M. Asano and Y. C. Tsai. 1995. Production and characterization of keratinase of a feather-degrading Bacillus lichenifromis PWD-1. Biosci. Biotech. Biochem. 59:2239-2243.
Cheryan, M. 1986. Ultrafiltration Handbook. Lancaster, PA: Technomic Publishing Co. Inc.
Chiplonkar, J. M., S. V. Gangodkar, U. V. Wagh, G. D. Ghadge, M. V. Rele and M. C. Srinivasan. 1985. Applications of alkaline protease from Conidiobolus in animal cell culture. Biotechnol. Lett. 7: 665-668.
Coolbear, T., C. Monk, K. Peek, H. W. Morgan and R. M. Daniel. 1992 Laboratory-scale investigations into the use of extremely thermophilic proteinases for cleaning for cleaning ultrafiltration membranes fouled during whey processing. J. Membrane Sci. 67:93-101.
Dai, W. K., Z. C. Shih and R. C. Chang. 1995. Synthesizing feather textures in Galliformes. Comput. graph. forum. 14:407-420.
Dalev, P. G. 1994. Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. Bioresour. Technol. 48:265-267.
Dalev, P., I. Ivanov and A. Liubomirova. 1997. Enzymic modification of feather keratin hydro-lysates with lysine aimed at increasing the biological value. J. Sci. Food Agric. 73:242-244.
Davis, J. G., E. P. Mecchi and H. Lineweaver. 1961. Processing of poultry by-products and their utilization in feeds. Part I. Processing of poultry by-products. Utilization Research Report No. 3, U. S. Department of Agriculture, Washington. DC.
DeBoer, A. and B. Diderichsen. 1991. On the safety of Bacillus subtilis and B. amyloliquefaciens : A review. Appl Microbiol. Biotechnol. 36:1-4.
Dhar, S. C. and S. Sreenivasulu. 1984. Studies on the use of dehairing enzyme for its suitability in the preparation of improved animal feed. Leather Sci. 31:261-267.
Dowling, L. M., W. G. Crewther and D. A. D. Parry. 1986. Secondary structure of component 8c-1 of α-keratin : analysis of the amino acid sequence. Biochem. J. 236:705-712.
Eggum, B. O. 1970. Evaluation of protein quality of feather meal under different treatments. Acta. Agr. Scand. 20:161-173.
Farag, A. M. and M. A. Hassan. 2004. Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme. Microbiol. Technology 34 : 85-93.
Fawzi, A. B. and S. Al-Asheh. 2000. Biosorption of phenol by chicken feathers. Environ. Engg. And Policy. 2:85-90.
Ferrero, M. A., G. R. Castro, C. M. Abate and M. D. Baigori. 1996. Thermostable alkaline protease of Bacillus lichenifromis MIR29: isolation, production and characterization. Microbiol. Biotech. 45:327-332.
Feughelmann, M. Keratin. In:Kroschwitz JI, editor. 1985. Encyclopedia of polymer seience and engineering, vol. 8 New York: Wiley. 566-600.
Figueras, M. J., J. Gurrado and L. Zaror. 1997. Ultrastructural aspects of hair digestion in black piedra infection. J. Med. Vet. Mycol. 35:1-6.
Fleming, A. B., M. Tangeney, P. L. Jørgensen, B. Diderichsen and F. G. Priest. 1995. Extracellular enzyme synthesis in sporulation-deficient strain of Bacillus licheniformis. Appl. Environ. Microbiol. 61. 3775-3780.
Fogarty, W. M., P. J. Griffin and A. M. Jooyce. 1974. Enzymes of Bacillus species. Process Biochem. 9: 27-35.
Friedrich, A. B. and G. Antranikian. 1996. Keratin degradation by Fervidobacterium pennavorans, a novel thermpohilic anaerobic species of the order Thermotogales. Appl. Environ. Microbiol. 62(8):2875-2882.
Fujiwara, N. and K. Yamamoto. 1987. Decomposition of gelatin layers on X-ray films by the alkaline protease from Bacillus sp. Hakkokogaku. 65:531-534.
Fujiwara, N., A. Masui and T. Imanaka. 1993. Purification and properties of the highly thermostable alkaline protease from an alkaliphilic and thermophilic Bacillus sp. J. Biotechnol. 30: 245-256.
Fujiwara, N., K. Yamamoto and A. Masui. 1991. Utilization of a thermostable alkaline protease from an alkalophilic thermophile for the recovery of silver from used X-ray film. J. Ferment. Bioeng. 72:306-308.
Gajju, H., T. C. Bhalla and H. O. Agarwal. Utilization of thermostable alkaline protease from Bacillus coagulans PB-77 for silver recovery from used Xray films. In: Proceedingsof 37th ANNual Conference of Association of Microbiologists of India, December 4-6, 1996, Chennai, India, (Abstract no. IM-4), 79.
George, S., N. Sivasankar, K. Jayaraman and M. A. Vijayalakshmi. 1997. Production and separation of the methionine-rich fraction from chick pea protein hydrolysate generated by proteases of Bacillus amyloliquefaciens. Process Biochem. 32:401-404.
Gerorge, S., V. Raju, M. R. V. Krishnan, T. V. Subramanian and K. Jayaraman. 1995. Production of protease by Bacillus amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins. Process Biochem. 30:457-462.
Glover, F. A. 1985. Ultrafiltration and Reverse Osmosis for the Dairy Industry, Technical Bulletin, The National Institute for Research in Dairying.
Gold, A. M. and D. Fahrney. 1964. Sulfonyl fluorides as inhibitors of esterases. Ⅱ. Formation and reactions of phenyl methanesulfonyl alpha-chymotrypsin. Biochem. 3: 783-791.
Gololobov, M. Y., V. M. Stepanov., T. L. Voyushina., I. P. Morozova and P. Aduereutz. 1994. Side reactions in enzymatic peptide synthesis in organic media: Effects of enzymem solvent and substrate concentration. Enzyme Microb. Technol. 16:522-528.
Gonzalez-Tello, P., F. Camacho, E. Jurado, M. P. Paez and E. M. Guadix. 1994. Enzymatic hydrolysis of whey proteins. I. Kinetic models. Niotechnol. Bioeng. 48: 523-528.
Gonzalez-Tello, P., F. Camacho, E. Jurado, M. P. Paez and E. M. Guadix. 1994. Enzymatic hydrolysis of whey proteins. Ⅱ. Molecular weight range. Niotechnol. Bioeng. 48: 529-532.
Gould, J. B. 1975. Enzyme data, In: Handbook of enzyme biotechnology (Wise-man, A., ed.)pp. 128-162. Ellis Horwood Ltd., Chichester.
Gradiša, H. S. Kern and J. Friedrich. 2000. Keratinase of Doratomyces microsporus. Appl. Microbiol. Biotechnol. 53:196-200.
Gusek, T. W., M. T. Tyn and J. E. Kinsella. 1990. Immobilization of the serine protease from Thermomonospora fusca YX on porous glass. Biotechnol. Bioeng. 36: 411-416.
Hameed, A., M. A. Natt and C. S. Evans. 1996. Production of alkaline protease by a Bacillus subtilis isolate for use as a bating enzyme in leather treatment. World J. Microbiol. Biotechnol. 12:289-291.
Han, Y. and C. M. Parsons. 1991. Protein and amino acid quality of feather meals. Poult. Sci. 70:812-822.
Hodgson, J. 1994. The changing bulk biocatalyst marker. Biotechnol. 12:789-790.
Horikoshi, K. 1971. Production of alkaline enzymes by alkalophilic microorganisms. Part Ⅰ. Alkaline protease produced by Bacillus No. 221. Agric. Biol. Chem. 35: 1407-1414.
Horikoshi, K. and T. Akiba. 1982. Alkalophilic Microorganisms: A New Microbial World. Tokyo, Japan, Japan Scientific Societies Press and Berlin, Germany Springer-Verlag.
Hussein, A. M. and M. A. Swelim. 1989. Adaptation course of Microplospora keratinolytica to chicken feather into soluble nitrogenous products. In: Proceedings of the seventh Conference of Microbilolgy, Cairo, Egypt, 31-38.
Hussein, A. M. and Z. Elakied. 1989. Amino acids as products of chicken feather biodegradation by Microplospora keratinolytica and their metabolism. In: Proceedings of the seventh Conference of Microbilolgy, Cairo, Egypt, Pp:52-64.
Jacobs, M., M. Eliasson, M. Uhlen and J. I. Flock. 1985. Colonig sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Reserarch. 13:8913-8926.
Jeremy, M. B., L. John. 2001. Tymoczko and Lubert Stryer Biochemistry 5th ed pp. 231, 237. W. H. Freeman and company New York.
Kapoor, J. and J. King. 1997. Effect of carbon absorbent surface properties on the uptake and solvent regeneration of phenol. Ind. Eng. Chem. Res. 36:1603.
Katoh, K., M. Shibayama, T. Tanabe and K. Yamauchi. 2004. Preparation and physicochemical properties of compression-molded keratin films. Biomaterials 25 : 2265-2272.
Katoh, K., T. Tanabe and K. Yamauchi. 2004. Novel approach to fabricate keratin sponge scaffolds with controlled pored size and prorsity. Biomaterials. 25:4255-4262.
Kida, K., S. Morimura, J. Noda, Y. Nishida, T. Imai and M. Otagiri. 1995. Enzymic hydrolysis of the horn and hoof of cow and buffalo. J. Ferment. Bioeng. 80:478-484.
Kim, J. M., W. J. Lim and H. J. Suh. 2001. Feather-degrading Bacillus species from poultry waste. Porcess Biochm. 37:287-291.
Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. Strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62:2482-2488.
Knabe, D. A., K. C. LaRue, E. T. Gregg, G. M. Martinex and T. D. Tanksley. 1989. Apparent digestibility of nitrogen and amino acids in protein feedstuffs by growing pigs. J. Anim. Sci. 67:441-458.
Kobayashi, T., Y. Hakamada, S. Adachi, J. Hitomi, T. Yoshimatsu, K. Koike, S. Kawai and S. Ito. 1995. Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl. Microbiol. Biotechnol. 43: 473-481.
Kumar, C. G. 1997. Ph. D. thesis. National Dairy Research Institute (Deemed University), Karnal, India. Studies on microbial alkaline proteases for use in dairy detergents.
Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases : From a bioindustrial viewpoint. Biotechnol. Adv. 17:561-594.
Kunert, J. 1989. Biochemical mechanisms of keratin degradation by actinomycete Streptomyces fradiae and fungus Microsporium gypseum, a comparison. J. Basic. Microbiol. 29:597-604.
Kunert, J. 1992. Effects of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporium gypseum. Mycoses. 35:343-348.
Kwon, Y. T., J. O. Kim, S. Y. Moon, H. H. Lee and H. M. Rho. 1994. Extracellular alkaline protease from alkalophilic Vibrio metschnikovii strain RH530. Biotechnol. Lett. 16:413-418.
Lal, S., T. C. Rajak and S. K. Hasija. 1999, In vitro degradation of keratin by two species of Bacillus. J. Gen. Appl. Microbiol. 45:283-287.
Larcher, G., B. Cimon, F. Symoens, G. Tronchin, D. Chabasse and J. P. Bouchara. 1996. A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem. J. 315: 119-126.
Larcher, G., B. Cimon, F. Symoens, G. Tronchin, D. Chabasse and J. P. Bouchara. 1996. A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem. J. 315:119-126.
Latshaw, J. D., N. Musharf, R. Retrum. 1994. Processing of feather to maximize its nutritional value for poultry. Anim. Feed Sci. Technol. 47:179-188.
Lehninger, A. L., D. L. Nelson and M. M. Cox. 1993. The three-dimensional structure of proteins. In: Principles of Biochemistry. 2nd ed. Worth Publishers, New York.
Lin, X., C. G. L., E. S. Casale and J. C. H. Shih. 1992. Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl. Environ. Mocrobiol. 58:3271-3275.
Lin, X., J. C. H. Shih and H. E. Swaisgood. 1996. Hydrolysis of feather keratin by immobilized keratinase. Appl. Environ. Microbilol. 62:4273-4275.
Malathi, S. and R. Chakraborty. 1991. Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Appl. Environ. Microbiol. 57:712-716.
Malviya, H. K., R. C. Rajak and S. K. Hasija. 1992. Synthesis and regulation of extracellular keratinase in three fungi isolated from the grounds of a gelatin factory, Jabalpur, India. Mycopathologia. 120:1-4.
Marshall, R. C. D. F. G. O. and J. M. Gillespie. 1991. Structure and biochemistry of mammalian hard keratin. Electron Microsc. Rev. 4:47-83.
Matheickal, B. and G. Straube. 1993. Biosorption of metals by wastebiomass. J. chem. technol. biotechnol. 58:57-63.
Matsui, T., H. Matsufuji, E. Seki, K. Osajima, M. Nakashima and Y. Osajima. 1993. Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolysates derived from sardine muscle. Biosci. Biotechnol. Biochem. 57:922:925.
Matsuzawa, H., K. Tokugawa, M. Hamaoki, M. Mizoguchi, H. Taguch, I. Terada, S. Kwon and T. Ohta. 1988. Purification and characterization of aqualysin I (thermophilic alkaline serine protease) produced by Thermusaquaticus YT-1. Eur. J. Biochem. 171:441-447.
Morihara, K. 1974. Comparative specificity of microbial proteinases. Adv. Enzymol. 41:179-243.
Mukhopadhyay, R. P. and A. L. Chandra. 1993. Protease of a keratinolytic Streptomycete to unhair goat skin. Indian. J. Exp. Biol. 31:557-558.
Munch, E. W. and W. Stein. 1979. Hair processing costs and benefits. Fleischmehlindustrie. 31:118-148.
Nagashima, T., A. Watanabe and H. Kise. 1992. Peptide synthesis by proteases in organic solvents: Medium effect on substrate specificity. Enzyme Microb. Technol. 14:842-847.
Nakamura, T., Y. Syukunobe, T. Sakarai and T. Idota. 1993. Enzymematic production of hypoallergenic peptides from casein. Milchwissenschaft. 48: 11-14.
Nakanishi, T. Y. M., N. Minamiura and T. Yamamoto. 1974. Purification and some properties of an alkalophilic proteinase of a Streptomyces species. Agric. Biol. Chem. 38: 37-44.
Nam, G. W., D. W. Lee, H. S. Lee, N. J. Lee, B. C. Kim, E. A. Choe, J. K. Hwang, M. T. Suhartono and Y. R. Pyun. 2002. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophillic anaerobe.
National Research Council, 1984. Nutrient Requirements of Poultry. 8th ed. National Academy Press, Washington, DC.
Neurath, H. 1984. Evolution of proteolytic enzymes by Hans. Science. 24: 350.
Nickerson, W. J., J. J. Noval and R. S. Robison. 1963. Keratinase I : Properties of the enzyme conjugate elaborated by Streptomyces fradiae. Biochim. Biophys. Acta. 77:73-86.
Nielsen, M. H., S. J. Jensen and H. Outtrup. 1981. Enzyme for low temperature washing. J. Am. Oil Chem. Soc. 58:644-649.
O’Meara, G. M. and P. A. Munro. 1984. Effects of reaction variables on the hydrolysis of lean beef tissue by Alcalase. Meat Sci. 11:227-238.
O’Meara, G. M. and P. A. Munro. 1984. Selection of a proteolytic enzyme to solubilize lean beef meat tissue. Enzyme Microb. Technol. 6:181-185.
Ockerman, H. W. 1972. Quality control of postmortem muscle tissue. p. 120. The Ohio state University and the Ohio agricultural research and development center. U. S. A.
Onifade A. A., N. A. Al-Sane, A. A. Al-Musaliam and S. Al-Zarban. 1998. Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresur. Technol. 66:1-11.
Paliwal, N., S. P. Singh and S. K. Garg. 1994. Cation-induced thermal stability of an alkaline protease from a Bacillus sp. Bioresour. Technol. 50: 209-211.
Pa-padopoulos, W. C. 1985, Processed chicken feather as feed stuff for poultry and swine. Rev. Agricultural waste. 14:275-290.
Papadopoulus, M. C. 1989. Effect of processing on high protein feedstuffs. A review. Biol. Wastesl. 29:123-138.
Parry, D. A. D., W. G. Crewther, R. D. B. Fraser and T. P. MacRae. 1977. Structure of α-keratin : structural implication of the amino acid sequences of the type Ⅰand type Ⅱchain segments. J. Mol. Biol. 113:449-454.
Patil, D. R., D. G. Rethwisch and J. S. Dordick. 1991. Enzymatic synthesis of a sucrose-containing linear polyester in nearly anhydrous organic media. Biotechnol. Bioeng. 37:447-450.
Peek, K., R. M. Daniel, C. Monk, L. Parker and T. Coolbear. 1992. Purification and characterization of a thermostable proteinase isolated from Thermus sp. Strain Rt41A. Eur. J. Biochem. 207:1035-1044.
Rahman, R. N. Z. A., C. N. Razak, K. Ampon, M. Basri, W. M. Z. W. Yunus and A. B. Salleh. 1994. Purification and characterization of a heat-stable alkaline protease from Bacillus stearothermophlus F1. Appl. Microbiol. Biotechnol. 40: 822-827.
Reed, G. Enzymes in food processing . 2th ed pp. 263. Academic Press.
Robbins, K. R. and D. H. Baker. 1980. Studies on the utilization of lysino-alanine and lanthionine. J. Nutr. 110:907-915.
Ruffin, P., S. Andrieu and G. Biserte. 1976. Sulphytolysis in keratinolysis. Biochemical Proof. Sabouraudia. 14: 181-184.
Samal, B. B., B. Karan, C. Parker and Y. Stabinsky. 1991. Isolation and thermal stability of two novel serine proteinases from the fungus Tritirachium album Limber. Enzyme Microb. Technol. 13: 66-70.
Seerley, K. R. 1991. Major feedstuffs used in swine diets. In: Miller, E. R., D. E. Ullrey and A. J. Lewis (Editor). Swine Nutrition. Butterworth-Heinemann. Boston, MA. pp451-481.
Shih, J. C. H. 1993. Recent development in poultry waste digestion and feather utilization-a review. Poultry Sci. 72:1617-1620.
Shih, J. C. H. and C. G. Lee. Method and composition for maintaining animals on a keratin-containing diet. US Patent N., 5186971.1993
Shimogaki, H., K. Takeuchi, T. Nishino, M. Ohdera, T. Kudo, K. Ohba, M. Iwama and M. Irie. 1991. Purification and properties of a novel surface-active agent and alkaline-resistant protease from Bacillus sp. Y. Agric. Biol. Chem. 55: 2251-2258.
Sinha, U. S., A. Wolz and J. L. Pushkaraj. 1991. Two new extracellular serine proteinases from Streptomycws fradiae. Int. J. Biochem. 23:979-984.
Sinha, U., S. A. Wolz and J. L. Pushkaraj. 1991. Two new extracellular serine proteinases from Streptomyces fradiae. Int. J. Biochem. 23:979-984.
Stahl, M. L. and E. Ferrari. 1984. Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J. Bacteriol. 158:411-418.
Suyama, K., Y. Fukazawa and H. Suzumura. 1996. Biosorption of precious metal ions by chicken feather. Appl. Biochem. Biotechnol. 57:67-74.
Takami, H., S. Nakamura, R. Aono and K. Horikoshi. 1992. Degradation of human hair by a thermostable alkaline protease by alkalophilic Bacillus sp. AH-101. Biosci. Biotechnol. Biochem. 56:1667-1669.
Takami, H., T. Akiba and K. Horikoshi. 1990. Characterization of an alkaline protease from Bacillus sp. No. AH-101. Appl. Microbiol. Biotechnol. 33:519-523.
Takami, H., T. Akiba and K. Horikoshi.1989. Production of extremely thermostable alkaline protease from Bacillus sp. No. AH-101. Appl. Microbiol. Biotechnol. 30(2):120:124.
Taylor, M. M., D. G. Bailey and S. H. Feairheller. 1987. A review of the use of enzymes in the tannery. J. Am. Leather Chem. Assoc. 82:153-165.
Taylor, M. M., D. G. Bailey and S. H. Feairheller. 1987. A review of the use of enzymes in the tannery. J. Am. Leather Chem. Assoc. 82: 153-165.
Tobe, S., T. Takami, Y. Hirose and K. Mitsugi. 1975. Purification and some properties of alkaline proteinases from Bacillus sp. Agric. Biol. Chem. 39: 1749-1755.
Tobin, J. and D. Cooper. 1990. Investigation of the mechanism of metal uptake by denatured Rhizopus arrhizus biomass. Enzyme Microb. Technol. 12:591.
Tsai, Y. C., S. F. Lin, M. Yamasaki and G. Tamura. 1986. Characterization of an alkaline elastase from alkalophilic Bacillus Ya-B. Biochim. Biophys. Acta. 883:439-447.
Tsai, Y. C., Y. T. Lin, Y. B. Yang, Y. F. Li, M. Yamasaki and G. Tamura. 1988. Specificity of alkaline elastase Bacillus on the oxidized insulin A- and B-chains. J. Biochem. 104:416-420.
Tsuchida, O., Y. Yagima, T. Ishizuka, T. Arai, J. Yamada, M. Takeuchi and E. Ichishima. 1986. An alkaline proteinase of an alkalophilic Bacillus sp. Curr. Microbiol. 14:7-12.
Tsuchiya, K., K. Seki, T. Arai and T. Masui. 1993. Substrate specificity of alkaline proteases from Cephalosporium sp. KSM388. Biosci. Biotechnol. Biochem. 57:1803-1804.
Tsujibo, H. K. Miyamoto, T. Hasegawa and Y. Inamori. 1990. Purification and characterization of two types of alkaline serine protease produced by an alkalophilic actinomycete. J. Appl. Bacteriol. 69: 520-529.
Varela, H., M. D Ferrari, L. Belobrajdic, A. Vazque and M. L. Loperena. 1997. Skin unhairing proteases of Bacillus subtilis : Production and partial characterization. Biotechnol. Lett. 19:755-758.
Vasantha, N., L. D. Thompson, C, Rhodes, C. Banner, J. Nagle and Filpula. 1984. Genes for alkaline protease and neutral protease from Bacillus amyliliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159:811-819.
Venkateswarlu, K. and K. Steven. 1996. Biochemical characterisation of ketoconazole inhibitory action on Aspergillus fumigatus. FEMS Immunol. Med. microbiol. 16:11-20.
Walter, H. E. 1981. Methods with gaemoglobin, casein and azocoll as substrate in “Methods of Enzymeatic Aanalysis” (5) (ed. H. V. Bergmeyer). Verlag Chemic GmbH. D-6940 Weinheim. pp 270-277.
Wang, X. and C. M. Parsons. 1997. Effect of processing systems on protein quality of feather meal and hair meals. Poultry Sci. 76:491-497.
Ward, O. P. 1985. Proteolytic enzymes. In: Blanch H. W., S. Drew, K. I. Wang, editors. Comprehensive Biotechnology-The Principles, Applications and Regulations of Biotechnology in industry, Volume 3. Oxford and New York: Pergamon Prss. 60:1672-1675.
Wessels, J. P. H. 1972. A study of the protein quality of different feather meals. Poultry Sci. 51: 537-541.
Williams , C. M., C. S. Richter, J. M. MacKenzie and J. C. H. Shih. 1990. Isolation, identification and characterization of a feather-degrading bacterium. Appl. Environ. Microbiol. 56:1509-1515.
Williams, C. M. and J. C.H. Shih. 1989. Enumeration of some microbial. Groups in thermophilic poultry waste digesters and enrichment of a feather-degrading culture. J. Appl. Bacteriol. 67:29-35.
Williams, C. M., C. G. Lee, J. D. Garlich and J. C. H. Shih. 1990. Evaluation of a bacterial feather fermentation product, feather-lysate, as a feed protein. Poultry Sci. 70:85-94.
Wilson, S. A., K. Peek and R. M. Daniel. 1994. Immobilization of a proteinase from the extremely thermophilic organism Thermus Rt41A. Biotechnol. Bioeng. 43:225-231.
Wilson, S. A., K. Peek and R. M. Daniel. 1994. Peptide synthesis with a proteinase from the extremely thermophilic organism Thermus Rt41A. Biotechnol. Bioeng. 44:337-346.
Wilson, S. A., O. A. Young, T. Coolbear and R. M. Daniel. 1992. The use of proteases from extreme thermophiles for meat tenderization. Meat Sci. 32:93-103.
Yamagata, Y., K. Ishiki and E. Ichishima. 1995. Subtilisin Sendai from alkalophilic Bacillus sp. : Molecular and enzymatic properties of the enzyme and molecular colning and characterization of the gene, apr S. Enzyme Microb. Technol. 17:653-663.
Yamauchi, K., A. Yamauchi, T. Kusunoki, A. Kohda, Y. Konishi. 1996. Preparation of stable aqueous solution of keratins, and physico-chemical and biodegradational properties of films. J. Biomed. Mater Res. 439-444.
Yum, D. Y., H. C. C., D. H. Bai, D. H. Oh and J. H. Yu. 1994. Purification and characterization of alkaline serine protease from an alkalophilic Streptomyces sp. Biosci. Biotechnol. Biochem. 58: 470-474.
Zerdani, I., M. Faid and A. Malki. 2004. Feather wastes digestion by new isolated strains Bacillus sp. in Morocco. Afr. J. Biotechnol. 3 : 67-70.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top