跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉兆昌
研究生(外文):Chao-Chang, Liu
論文名稱:杉木人工林樹冠結構與生物量之研究
論文名稱(外文):Studies on Crown Structure and Biomass of A China-Fir Plantation
指導教授:李久先李久先引用關係顏添明顏添明引用關係
指導教授(外文):Joou-Shian, LeeTian-Ming, Yen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:73
中文關鍵詞:樹冠形態樹冠結構葉面積生物量
外文關鍵詞:crown formcrown structureleaf areabiomass
相關次數:
  • 被引用被引用:11
  • 點閱點閱:607
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
  本研究旨在探討杉木人工林樹冠結構與生物量之相關問題,研究區域位於台灣中部八仙山事業區十文溪生態系經營示範區內第111林班之杉木人工林,調查林分之各項生長狀況,並採用16株樣木進行林木生長研究,以理論模式為基礎,以及應用森林測計學之方法,配合統計軟體,進行杉木林分與樣木之資料分析,來探討胸徑與樹冠之性態值間的關係,樹冠形態與結構之特性,並估算林木之淨生產力,以及分析葉面積量。研究所得主要結果分述如下:
  在林木樹冠之垂直變化中,林木之樹冠長、枝下高和胸徑間之關係為線性關係,且隨胸徑之增大,樹冠長和枝下高之間,呈現漸次增大之趨勢,而其平均樹冠比約0.58。
  杉木人工林之樹冠形態與結構中,其樹冠形呈現圓錐形或圓柱體,而葉量在垂直空間分佈,可以最大葉密度分佈來區分上層與下層樹冠,其杉木最大葉密度分佈約為1.7~2.0 kg/m,約在離頂端距離3~5 m。
  杉木各部位淨生產量,隨著胸徑之增加,其幹量與枝量之淨生產量逐漸增加,地上部之淨生產量則是以直徑級Ⅱ達最大,約為1.46 ton/ha/yr。另外杉木幹量之生產構造,隨胸徑之增大,其增加的幅度愈大,枝條量在垂直分布上則逐漸往上移,葉量主要分布於中、上層樹冠,故以生產構造特性來說,葉量之分布類似闊葉型之生產構造。
  杉木林平均單株葉面積隨直徑級增大而增加,直徑級Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ之平均單株葉面積分別為74.15, 104.13, 133.11, 164.31, 206.34 m2/tree,並由林分之資料推估可得知杉木林分葉面積指數約為3.87。而葉面積則與邊材面積具有較高之相關性,符合管束模式理論。
  杉木人工林經營中,其修枝撫育作業在垂直方面,以修枝至葉密度分佈最高點位置,且維持樹冠比約0.20~0.30間為最適宜,另外以直徑級Ⅱ之葉空間密度,可使林木之生物量為最大,故可提供未來杉木人工林經營之重要參考資訊。
  The purpose of this study was to discuss crown structure and biomass of mature China-fir (Cunninghamia lanceolata). The study area is location in the central part of Taiwan, at compartment no.111, Pa-Hsien-Sha working circle and Shyr-Wen-Shi demonstration zone. Data of this study were collected from stand and 16 sample trees of a mature China-fir plantation. This study is based on theory way, and use forest measure method and statistics software, to analysis the relationships of DBH and the other attributes, and characteristic of crown form and crown structure, and estimate the of net productivity, and analysis leaf area amount. The analyzed results are summarized as follows.
  In the vertical distribution of crown, the relationship among crown-length(LC), clear-length(HB) and tree DBH of open-growth tree were found positively linear. LC and HB were increased as DBH increased. The mean crown ratio(CR) about 0.58, which have certain proportionate relationships, and growth condition was very well.
  The crown form and crown structure of mature China-fir, which the crown form shown cone or cylinder, and the leaf weight can to discriminate upper crown and down crown by maximum leaf density distribution on vertical layer. The maximum leaf density distribution is 1.7~2.0 kg/m on the from top to 3~5 m.
  The net productivity of China-fir, the net production of stem and branch were increased as DBH increased, the maximum net productivity of aboveground was diameter classⅡ about 1.46 ton/ha/yr. The major dry-matter distributions of China-fir stem increase with DBH, the branch dry-matter increase with height on the vertical distribution, the leaf dry-matter was concentrated in the upper or middle parts of the crown, and it is similar to the broad leaf type dry-matter distribution.
  The crown leaf area of China-fir individual tree increase with diameter class, so diameter class Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ of leaf area were 74.15, 104.13, 133.11, 164.31, 206.34 m2/tree, respectively. And it is estimate China-fir leaf area index about 3.87. The highly positive correlations were found between leaf area and sapwood, accord with the pipe model theory.
  The pruning operation might be useful maximum leaf density distribution on the vertical distribution of the China-fir plantation, and CR keep to 0.20~0.30 was expediency. The leaf spatial density was diameter class Ⅱ, and it have maximum biomass. The results will provide detailed information for China-fir plantation management.
目錄……………………………………………………………………Ⅰ
表目錄…………………………………………………………………Ⅱ
圖目錄…………………………………………………………………Ⅲ
摘要……………………………………………………………………Ⅳ
Summary……………………………………………………………….Ⅵ
 一、前言……………………………………………………………1
 二、前人研究………………………………………………………3
  (一)樹冠形態與結構……………………………………………3
  (二)樹冠與樹幹間之關係………………………………………7
  (三)樹冠生物量之研究…………………………………………10
  (四)林分葉面積…………………………………………………12
 三、研究材料及方法………………………………………………16
  (一)研究區概況…………………………………………………16
  (二)研究材料與方法……………………………………………18
  (三)研究流程……………………………………………………24
 四、結果與討論……………………………………………………25
  (一)樣木各項生長性態值………………………………………25
  (二)胸徑與各項性態值之關係…………………………………28
  (三)樹冠在不同林齡之垂直變化………………………………33
  (四)樹冠形態與結構……………………………………………35
  (五)不同直徑級樹冠之大小與葉的空間密度…………………43
  (六)杉木林分淨生產量…………………………………………45
  (七)杉木生產構造………………………………………………49
  (八)林分葉面積分析與推估……………………………………53
 五、結論……………………………………………………………63
 六、參考文獻………………………………………………………65
王子定、郭寶章 (1960) 杉木。國立台灣大學。1-8頁。
王子定 (1993) 現代育林學(上)。國立編譯館。567頁。
王子定與高毓斌 (1979) 再論森林生物量。中華林學季刊,12(3):1-30。
宋從和、翟保國、王文心、張宏達 (1994) 油松人工林葉面積及林內光狀況的研究。中國森林生態系統定位研究。46-52頁。
肖水清、廖龍泉、張華、劉光正、曹展波 (2000) 15種優良闊葉數種生態學特性研究-葉面積指數、葉片生物量及滯水量得研究。江西林業科技,5:1-3。
余蘭君 (2002) 南仁山次生林林分結構之空間變異。國立屏東科技大學熱帶農業研究所碩士學位論文。
呂錦明 (1985) 杉木之萌芽更新。現代育林,1(1):33-46。
呂錦明、陳財輝 (1992) 桂竹之林分構造及生物量‐桶頭‐桂竹林分之例。林業試驗所研究報告季刊,7(1):1-13。
林子玉 (1956) 能高林場杉木、柳杉及日本扁柏之生長比較研究。農林學報第5輯,68-96頁。
林子玉 (1958) 不同森林土壤型上杉木之生長比較研究。農林學報第7輯,19-52頁。
林務局 (2001) 台灣地區林業統計。
林務局網站 (2004) http://www.forest.gov.tw/web/index.asp
林國銓、洪富文、游漢明、馬復京 (1994) 福山試驗林闊葉林生態系生物量與葉面積指數的累積與分布。林業試驗所研究報告季刊。9(4):299-315。
林照松、洪富文 (1991) 六龜地區台灣杉人工林之生長。林業試驗所研究報告季刊,6(3):229-248。
周禎、王德春 (1967) 溪頭紅檜人工林之生長與疏伐。台大實驗林叢刊37號,52頁。
吳儀生 (1994) 會蓀實驗林場不同密度杉木林分生物量與養分含量之研究。國立中興大學森林學研究所碩士論文。
洪富文 (1991) 人工林木營養。國立編譯館,526頁。
洪富文、夏禹九、唐凱軍 (1986) 蓮華池次生暖溫帶山地雨林地上不生物量及葉面積之估算。林業試驗所試驗報告第465號。
馬仕穆 (2000) 以SPOT衛星影像資料推估南仁山森林生態系之葉面積指數及凋落物。國立屏東科技大學熱帶農業研究所碩士學位論文。
高毓斌 (1985) 台灣孟宗竹林之生產力與生物性養分循環。國立台灣大學森林學研究所博士論文。
陳朝圳 (1984) 針葉樹人工林林分樹冠底面積、投影面積之測計及其在林分生長過程中之變化。國立屏東農專森林學會會報第26期,34-45頁。
陳朝圳、馬仕穆 (2001) 以SPOT衛星影像資料推測南仁山森林生態系之葉面積指數。中華林學季刊,34(1):63-72。
陳燕章、鄭祈全、黃進睦 (1997) 六龜台灣杉人工林業面積指數之研究。林業試驗所專訊,4(4):10-12。
陳俊文 (1993) 大雪山地區紅檜人工林地上部生物量與養分聚積。國立中興大學森林學研究所碩士學位論文。
程煒兒、沈慈安 (1987) 恆春地區三至五年生銀合歡林分地上部養分聚積與循環。林試所研究報告季刊,2(4):253-272。
游漢明 (1981) 不同林齡柳杉林分地上部之生物量與淨生產量。國立台灣大學森林學研究所碩士論文。
張小全、趙茂盛、徐德應 (1999) 杉木中齡林樹冠葉面積密度空間分布及季節變化。林業科學研究(北京),12(6):612-619。
張志誠 (1992) 大雪山地區紅檜人工幼齡林疏伐效果之研究。國立中興大學森林學研究所碩士論文。
張峻德 (1986) 台灣中北部柳杉林分生產力。中華林學季刊,19(4):45-85。
焦國模 (1968) 各方位對杉木生長之影響。國立台灣大學實驗林研究報告60號。
詹益順 (1987) 紅檜人工幼齡林修枝作業之基礎研究。國立中興大學森林學研究所碩士論文。
楊文琪 (1992) 管束模式理論應用於大雪山地區紅檜人工林疏伐作業之研究。國立中興大學森林學研究所碩士論文。
劉慎孝 (1966) 立地方位對於杉木林分生長影響之研究。農林學報第15輯,68-96頁。
劉業經、林文鎮、林維治 (1979) 台灣經濟樹木育林學(一)。國立中興大學,1-110頁。
劉盛、劉成、劉士民 (2002) 基於管道模型的榆樹水分年輪疏導模式研究。北華大學學報(吉林省),3(5):438-440.
鄭祈全、邱祈榮、陳燕章 (1997) 應用遙測方法估測台灣杉林分之葉面積指數。台灣林業科學,12(3):309-317。
薛銘童、許博行 (2003) 關刀溪次生闊葉林地上部生物量與葉面積指數之研究。林業研究季刊,25(2):11-24。
戴廣耀 (1965) 不同海拔高對於柳杉、杉木及台灣杉苗木生育之影響。國立台灣大學實驗林研究報告42號。
顏添明、李久先、黃凱洛、劉兆昌 (2004) 杉木人工林成熟林分林木生長及生物量之探討。中華林學季刊,37(2):1-12。
小林正吾 (1978) カラマツ人工林の林分生長モデルに關する研究。北海道林業試驗場報告第15號,1-164頁。
梶原幹弘 (1975) 柳杉同齡林樹冠形態相關研究(Ⅰ)樹冠形。日林誌,57(12):425-431。
梶原幹弘 (1976) 柳杉同齡林樹冠形態相關研究(Ⅲ)林分內樹冠形態。日林誌,58(3):97-103。
依田恭二 (1971) 森林の生態學,築地書館。
Bartelink, H. H. (1996) Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology and Management, 85:193-203.
Bartelink, H. H. (1997) Allometric relationships for biomass and leaf area beech (Fagus sylvatica L). Ann. Sci. For., 54:39-50.
Beadle, C. L., H. Talbot, and P. G. Jarvis. (1982) Canopy structure and leaf area index in a mature Scots pine forest. Forestry, 55:105-123.
Bi, H. (2001) The self-thinning surface. For. Sci., 47(3):361-370.
Chiba, Y. (1998) Architectural analysis of relationship between biomass and basal area based on pipe model theory. Ecol. Modell., 108:219-225.
Dalla-Tea, F., and E. J. Jokela. (1991) Needlefall, canopy light interception, and productivity of young intensively managed slash and loblolly pine stands. For. Sci., 37:1298-1313.
Dean, T. J., and V. C. Baldwin. (1996) Growth and loblolly pine plantations as a functions of stand density and canopy properties. For. Ecol. Manage., 82:49-85.
Dean, T. J. and J. N. Long. (1986) Variation in sapwood area-leaf area relations within two stands of Lodgepole pine. For. Sci., 32(3):749-758.
Dixon, G. E. (1985) Crown ratio modeling using stand density index and the weibull distribution. Midwes mensurationists, 27-29.
Grier, C. C. and R. H. Waring. (1974) Conifer foliage mass related to sapwood area. For. Sci.,, 20:205-206.
Grier, C. C. and S. W. Running. (1997) Leaf area of mature northwestern coniferous forests: relation to site water balance. Ecol., 58:893-899.
Hasenauer, H. and R. A. Monserud. (1996) A crown ratio model for Austrian forests. For. Ecol. Manage., 84:49-60.
Hashimoto, R. (1990) Analysis of the morphology and structure of crowns in a young sugi (Cryptomeria japonica) stand. Tree Physiology, 6:119-134.
Hashimoto, R. (1991) Canopy development in young sugi (Cryptomeria japonica) stands in relation to changes with age in crown morphology and structure. Tree Physiology, 8:129-143.
Howard, J. A. (1991) Remote Sensing of Forest Resources: theory and application. Remote Sensing applications Chapman & Hall, New York. 24-51.
Hummel, S. (2000) Height, diameter and crown dimensions of Cordia alliodora associated with tree density. For. Ecol. Manage., 127:31-40.
Ishii, H., J. P. Clement, and D. C. Shaw. (2000) Branch growth and crown form in old coastal Douglas-fir. For. Ecol. Manage., 131:81-91.
Ishii, H. and N. McDowell. (2002) Age-related development of crown structure in coastal Douglas-fir trees. For. Ecol. Manage., 169:257-270.
Jasinski, M. F. (1990) Sensitivity of the normalized differences vegetation index to sub pixel canopy cover, soil albedo, and pixel scale. Remote Sens. Environ., 32:169-187.
Jean-Michel, N. W. and F. T. Emmanuel. (2000) The computation of forest leaf area index on slope using fish-eye sensors. Life Sciences. pp801-813.
Kinerson, R. S., K. O. Higginbotham, and R. C. Chapman. (1974) The dynamics of foliage distribution within a forest canopy. J. Appl. Ecol., 11:347-353.
Kozlowski, T. T., P. J. Kamer, and S. G. Pallardy. (1991) The Physiological Ecology of Woody Plants. Academic Press, New York. 657pp.
Landsberg, J. J. and S. T. Gower. (1997) Applications of physiological ecology to forest management. Academic Press, San Diego. pp51-57.
Long, J. N. and Smith, F. W. (1984) Relation between size and density in developing stands: a description and possible mechanisms. For. Ecol. Manage., 7:191-206.
Lugo, A., J. A. González-Liboy, B. Cintrón, and K. Dugger (1978) Structure, productivity, and transpiration of a subtropical dry forest in Puerto Rico. Biotropica. 10(4):278-291.
Maguire, D. A. and W. S. Bennett. (1996) Patterns in vertical distribution of foliage in young coastal Douglas-fir. Can. J. For. Res. 26:1991-2005.
Maguire, D. A. and A. Kanaskie. (2002) The ratio of live crown length to sapwood area as a measure of crown sparseness. For. Sci., 48(1):93-100.
McNaughton, K. G. and P. G. Jarvis. (1983) Predicting effects of vegetation changes on transpiration and evaporation. In Water Deficits and Plant Growth. (T. T Kozlowski, Ed.), Academic, London. 7:1-47.
Meadows, J. S. and J. D. Hodges. (2002) Sapwood area as an estimator of leaf area and foliar weight in Cherrybark oak and Green ash. For. Sci., 48(1):69-76.
Medhurst, J. L., M. Battaglia, M. L. Cherry, M. A. Hunt, D. A. White, and C. L. Beadle. (1999) Allometric relationships for Eucalyptus nitens (Deane and Maiden) Maiden plantations. Trees, 14:91-101.
Medhurst, J. L. and C. L. Beadle. (2001) Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations. Tree Physiology, 21:989-999.
Monserud, R. A. and H. Sterba. (1996) Abasal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For. Ecol. and Manage., 80:57-80.
Morataya, R., G. Galloway, F. Berninger, and M. Kanninen. (1999) Foliage biomass-sapwood (area and volume) relationships of Tectona grandis, L.F. and Gmelina arborea Roxb.: silvicultural implications. For. Ecol. and Manage., 113:231-239.
O’hara, K. L., E. Lahde, O. Laiho, Y. Norokorpi, and T. Saksa. (2001) Leaf area allocation as a guide to stocking control in multi-aged, mixed-conifer forests in southern Finland. Forestry. 74(2):171-185.
Pinkard, E. A. and W. A. Neilsen. (2003) Crown and stand characteristics of Eucalyptus nitens in response to initial spacing: implications for thinning. For. Ecol. and Manage., 172:215-227.
Rodríguez, R., M. Espinosa, G. Hofmann and M. Marchant. (2003) Needle mass, fine root and stem wood production in response to silvicultural treatment, tree size and competitive status in radiate pine stands. For. Ecol. and Manage., 186:287-296.
Ruark, G. A., G. L. Martin, and J. G. Bockheim. (1987) Comparison of constant and variable allometric ratios for estimating Populus tremuloides biomass. For. Sci., 33:294-300.
Shinozaki, K., K. Yoda, K. Hozumi, and T. Kira. (1964) A quantitative analysis of plant form-the pipe model theory. Ⅰbasic analysis. Jap. J. Ecol., 14(3):97-105.
Sullivan, T. P., R. G. Wagner, D. G. Pitt, R. A. Lautenschlager, and D. G. Chen. (1998) Changes in diversity of plant and small mammal communities after herbicide application in sub-boreal spruce forest. Can. J. For. Res., 28:168-177.
Tucker, G. F., J. P. Lassoie, and T. J. Fahey. (1993) Crown architecture of stand-grown sugar maple (Acer saccharum Marsh.) in the Adirondack Mountains. Tree Physiology, 13:297—310.
Valentine, H. T., V. C. Baldwin, T. G. Gregoire, and H. E. Burkhart. (1994) Surrogate for foliar dry matter in loblolly pine. For. Sci., 40:576-585.
Whitehead, D. (1978) The estimation of foliage area from sapwood basal area in Scots pine. Forestry, 51:137-149.
Whittaker, H, and G E. Likens. (1975) The biosphere and man. In: Lieth H, Whittaker R (eds) Primary productivity of the biosphere. Springer, Berlin Heidelberg New York, pp305-328.
Zeide, B. (1991) Self-thinning and stand density. For. Sci. 37(2):517-523.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top