跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡佺廷
研究生(外文):Chuan-Ting Tsai
論文名稱:亞太地區主要紙業公司之生產效率及生產力變動評估
論文名稱(外文):Evaluation of the production efficiency and productivity changes for major paper companies in Asia-Pacific
指導教授:洪國榮洪國榮引用關係李俊彥李俊彥引用關係
指導教授(外文):Kuo-Jung HongJun-Yen Lee
學位類別:博士
校院名稱:國立中興大學
系所名稱:森林學系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:110
中文關鍵詞:亞太地區紙業公司生產效率生產力變動
外文關鍵詞:Asia-Pacificpaper companiesproduction efficiencyproductivity changes
相關次數:
  • 被引用被引用:18
  • 點閱點閱:601
  • 評分評分:
  • 下載下載:136
  • 收藏至我的研究室書目清單書目收藏:5
亞太地區紙品產量和消費量的成長速度,近年來都高於其它各洲,也高於世界平均值。然而為了面對全球各大洲紙業公司的競爭壓力,則有必要瞭解業者的經營績效。本研究利用「全球林業與紙業」的縱橫資料,以資料包絡分析法及隨機邊界法衡量1998~2001年亞太地區主要紙業公司之生產效率及生產力變動情形。結果顯示:
亞太地區主要紙業公司於1998~2001年之平均生產效率,利用資料包絡分析法衡量為0.707,表示尚有29.3%之提昇空間。其無效率之源由主要來自於變動規模報酬的無效率為0.183(1-0.817),而來自於規模無效率則為0.15(1-0.85)。1998~2001年亞太地區主要紙業公司共56家,其中屬規模報酬遞增為28家(50%);屬固定規模報酬為10家(17.9%);而屬規模報酬遞減為18家(32.1%)。各年的平均生產效率值均以日本最高;而其它國家之生產效率呈現逐年遞增的現象。
以隨機邊界模式衡量顯示,勞動與資本對產出值為非線性的顯著且正向性的影響,總無效率中由人為可控制之無效率所佔之比率非常大。亞太地區主要紙業公司之平均生產效率為0.71,尚有29%之提昇空間。日本生產效率平均值均高於澳紐及其他國家之平均效率值。
就生產力變動而論,以DEA-Malmquist分析得知,1998~2000年亞太地區之總要素生產力為正成長,但2000~2001年則呈現負成長,造成這種現象乃歸因於技術退化。利用SFA模式則發現,總要素生產力在1998-2001年間,均大於1代表生產力有改善,但呈現下降趨勢,而變動的來源主要是受效率變動影響。整體上其他國家之總要素生產力變動指數大於日本及澳紐,代表其他國家的生產力改善較日本及澳紐為高。
另外,就兩種方法衡量結果觀之,生產效率方面大致上是SFA-TE高於DEA-TE;而生產力變動則為DEA-Malmquist高於SFA-TFPCH。
The growth rates of production and consumption of paper products in Asia-Pacific were not only higher than other continents but also higher than mean value of the world in recent years. Under the pressure of global competition, it is necessary to understand the management performance of paper companies. This study employed the panel data of global forest and paper companies, and were analyzed by data envelopment analysis (DEA) and stochastic frontier approach (SFA) to measure the production efficiency and productivity changes from 1998 to 2001 in Asia-Pacific’s major paper companies.
In this paper the average score of production efficiency measured by DEA was 0.707. It still had 29.3% improving level of production efficiency in Asia-Pacific’s major paper companies. The technical inefficiency score under the assumption of variable return to scale (VRS) was 0.183 and scale inefficiency was 0.15. The total numbers of major paper companies were 56 in Asia-Pacific during 1998 to 2001. Twenty-eight (50%) of them were identified as increasing return to scale companies, 10 (17.9%) of them were constant return to scale companies, and 18 (32.1%) of them were decreasing return to scale companies, respectively. The highest annual score of production efficiency was in Japan. Production efficiency of companies in other country was increasing yearly.
The production efficiency results derived from SFA revealed that labor and capital have significant non-linear and positive influence on production. The rate of inefficiency coming from human control factor was very high among the total inefficiency. Average score of production efficiency of Asia-Pacific’s major paper companies was 0.71; it still had 29% of improving level. Production efficiency of Japan was higher than the other countries.
As a result of total factor productivity changes, analyzed by DEA-Malmquist, it had shown the positive growth rate form 1998 to 2000 in Asia-Pacific. However it had negative growth rate due to the technical regress during the period of 2000 to 2001. Measured by SFA model, it was found that total factor productivity changing index (TFPCH) during 1998-2001 was greater than 1. It means the productivity had been well improved; but it had still showed the decrease tendency. The main reason for the productivity change was coming from the efficiency change. Generally speaking, TEPCH index in other countries was greater than that was in Japan, Australia and New Zealand. The results indicated that the productivity improvement in those areas was higher than Japan, Australia and New Zealand.
After comparison between SFA and DEA, the SFA-TE was higher than DEA-TE in production efficiency, and DEA-Malmquist was higher than SFA-TFPCH in productivity changes.
目 錄
頁次
目錄……………………………………………………………… Ⅰ
表目次…………………………………………………………… Ⅳ
圖目次…………………………………………………………… Ⅵ
摘要……………………………………………………………… Ⅸ
Summary ………………………………………………………… Ⅹ
第一章 緒論 …………………………………………………… 1
一、研究動機及目的 ……………………………………… 1
二、研究步驟 ……………………………………………… 6
三、研究架構 ……………………………………………… 7
第二章 文獻回顧 ……………………………………………… 8
一、效率衡量模式之性質 ………………………………… 8
二、績效的意義 …………………………………………… 9
三、效率評估方法 ………………………………………… 10
(一)比率分析法 ………………………………………… 11
(二)迴歸分析法 ………………………………………… 12
(三)多目標衡量分析法 ………………………………… 13
(四)資料包絡分析法 …………………………………… 13
1.基本原理及優缺點………………………………… 13
2.使用程序…………………………………………… 15
3.理論、模式之主要發展…………………………… 17
4.實務應用方面……………………………………… 21
(五)隨機邊界法 ………………………………………… 24
1.緣起………………………………………………… 24
2.優缺點……………………………………………… 24
3.實務應用方面……………………………………… 24
四、資料包絡分析法與隨機邊界法之比較 ……………… 26
(一)資料包絡分析法 …………………………………… 27
(二)隨機邊界法 ………………………………………… 28
(三)兩種方法需要包括多少投入與產出 ……………… 29
第三章 研究方法之理論基礎 ………………………………… 30
一、效率觀念 ……………………………………………… 30
二、生產效率的理論基礎 ………………………………… 32
(一)資料包絡分析法 …………………………………… 32
1.CCR模式 …………………………………………… 33
2.BCC模式 …………………………………………… 36
3.圖解CCR和BCC二種型式之差別…………………… 40
(二)隨機邊界法 ………………………………………… 42
三、生產力變動的理論基礎 ……………………………… 44
(一)資料包絡分析法 …………………………………… 44
(二)隨機邊界法 ………………………………………… 50
第四章 紙類產業特性分析和資料、變數之說明 …………… 52
一、紙漿業特性 ……………………………………………… 52
(一)產業概況 …………………………………………… 54
(二)產銷分析 …………………………………………… 55
二、造紙業特性 …………………………………………… 55
(一)文化用紙 …………………………………………… 57
(二)工業用紙 …………………………………………… 58
(三)家庭用紙 …………………………………………… 59
三、本研究所用資料及變數之說明 ……………………… 60
(一)資料來源與廠商數 ………………………………… 60
(二)投入產出變數之定義 ……………………………… 63
第五章 亞太地區主要紙業公司生產效率之評估 …………… 64
一、資料包絡分析法 ……………………………………… 64
(一)DEA生產效率實證模式之建立 ……………………… 64
(二)實證結果分析 ……………………………………… 66
二、隨機邊界法 …………………………………………… 71
(一)SFA生產效率實證模式之建立 ……………………… 71
(二)實證結果分析 ………………………………………… 72
三、兩種方法所評估平均生產效率值之趨勢分析 ……… 74
第六章 亞太地區主要紙業公司生產力變動之衡量 ………… 77
一、資料包絡分析法 ……………………………………… 77
(一)產出導向DEA-Malmquist生產力變動指數實證模式之
建立…………………………………………………… 77
(二)實證結果分析 ……………………………………… 80
二、隨機邊界法 …………………………………………… 86
(一)SFA生產力變動指數實證模式之建立 ……………… 86
1.SFA效率變動指數…………………………………… 86
2.SFA技術變動指數…………………………………… 87
3.SFA生產力變動指數………………………………… 87
(二)實證結果分析 ………………………………………… 88
三、兩種方法所衡量生產力變動指數之趨勢分析 ………… 91
(一)亞太地區主要紙業公司1998-2001年DEA-TFPCH
和SFA-TFPCH之趨勢…………………………………… 91
(二)亞太地區主要紙業公司1998-2001年DEA-EFFCH
和SFA-EFFCH之趨勢…………………………………… 91
(三)亞太地區主要紙業公司1998-2001年DEA-TECH
和SFA-TECH之趨勢 …………………………………… 92
(四)不同區域DEA-TFPCH和SFA-TFPCH之趨勢…………… 92
(五)不同區域DEA-EFFCH和SFA-EFFCH之趨勢…………… 94
(六)不同區域DEA-TECH和SFA-TECH之趨勢……………… 94
第七章 結論與建議 …………………………………………… 96
一、結論……………………………………………………… 96
二、建議……………………………………………………… 98
參考文獻………………………………………………………… 99
1.台灣區造紙工業同業公會(2000)台灣造紙工業統計。
2.李長貴(1997)績效管理與績效評估。華泰文化事業公司出版。
3.李俊彥 (2001) 以DEA評估台灣製紙與紙板製造業生產效率及生產力變動。中華林學季刊 34(4):463~470。
4.尚瑞國(1998)租佃契約形式、市場競爭與農場經營效率。台灣農地金融季刊 35(4): 41-58。
5.胡名雯、薛 琦(1997)中小企業生產特性與效率之研究─ 台灣製造業之分析。經濟論文叢刊,25(1): 1-26。
6.馬維揚、林卓民、侯德健(2000)廠商特性與技術效率-以竹科電腦及週邊產業為例。產業金融季刊,第107期。
7.馬維揚、楊永列(2000)科學園區生技產業特性及效率評估-1993-1998。產業金融季刊,第107期。
8.陳奇賢(2000)台灣造紙業發展現況與趨勢。台研兩岸產業與投資,14: 9-16。
9.陳禹彰(1995)台灣地區工業區生產效率之評估研究―資料包絡分析法的應用。國立中山大學公共事務管理研究所碩士論文。
10.陳澄隆(2000)國內定期般運公司營運績效之研究:應用資料包絡分析法(DEA)。國立交通大學碩士論文。
11.陳慧瀅(1999)科學園區主要產業的相對效率之衡量。產業論壇,第一卷第二期, pp 135-146。
12.傅祖壇(1994)要素固定性、對偶成本邊界函數及生產效率之衡量-台灣毛豬農場之實證。經濟論文叢刊,22(4): 451-475。
13.黃旭男(1993)資料包絡分析法使用程序之研究及其在非營利組織效率評估上之應用。國立交通大學博士論文。
14.黃寶興(1998)總要素生產力之決定因素-台灣製造業的實證研究。私立中國文化大學經濟研究所碩士論文。
15.楊永列、傅祖壇(2000)新竹科學園區廠商之效率與生產力變動衡量:DEA及Malmquist之應用。台灣經濟學會2000年年會。
16.廖年榮(1999)產業動向。產業經濟,214: 101-105。
17.廖振谷(2001)台灣地區生技與製藥產業相對經營效率動態分析。國立中央大學企業管理研究所碩士論文。
18.劉錦添(1995)台灣製造業技術效率之實證分析。經濟論文叢刊,23(2): 149-169。
19.編輯部(2001)紙的消息。印刷人雜誌 26(144): 155-160。
20.中華造紙開發公司 (2002) 2010年世界及亞太地區紙與紙板情況預測。造紙與相關產業,第一期。
http// www.chinapaperexhibition.com
21.中華紙業網 (2003) 亞洲紙品生產和消費增速高於全球。http//cppinet.com
22.印藝(2000)世界書刊印刷紙業現狀及其發展趨勢。198期。http//www.gaahk.org.hk
23.彰化銀行研究發展處(2003)產業動態報導─紙漿業。
http//www.chb.com.tw
24.漿紙商務網 (2000) 紙產品消費市場潛力巨大。http//www.chinapaperonline.com
25.慧聰印刷商務網 (2003) 未來三年全球及亞洲紙器增長趨勢。
http//info.printing.sinobnet.com
26.Aigner, D. J., C. A. K. Lovell and P. Schmidt (1977) “Formulation and estimation of stochastic frontier production function models”, Journal of Econometrics 6: 21-37.
27.Andersen, P. and N. C. Petersen (1993) “A procedure for ranking efficient units in data envelopment analysis”, Management Science 39(10): 1261-1264.
28.Avkiran, N. K. (2001) “Investigating technical and scale efficiencies of Australian Universities through data envelopment analysis”, Socio-Economic Planning Sciences 35(1):57-80.
29.Banker, R. D., A. Charnes and W. W. Cooper (1984) “Some models for estimating technical and scale inefficiencies in data envelopment analysis”, Management Science 30(9): 1078-1092.
30.Banker, R. D. and R. C. Morey. (1986) “The use of categorical variables in data envelopment analysis”, Management Science 32(12): 1613-1627.
31.Banker, R. D. (1989) “Econometric estimation and data envelopment analysis”, Research in Governmental and Nonprofit Accounting 5:231-243.
32.Banker, R. D. and R. C. Morey. (1989) “Incorporating value judgments in efficiency analysis”, Research in Governmental and Nonprofit Accounting 5:245-267
33.Battese, G. E. and T. J. Coelli (1995) “A model for technical inefficiency effects in a stochastic frontier production function for panel data”, Empirical Economics 20(2): 325-332.
34.Bhattacharyya, A. and E. Parker (1999) “Labor productivity and migration in Chinese agriculture: A stochastic frontier approach”, China Economic Review 10: 59-74.
35.Boussofiane, A., R. G. Dyson and E. Thanassoulis (1991) “Applied data envelopment analysis”, European Journal of Operational Research 52: 1-15.
36.Burki, A. A. and D. Terrell. (1998) “Measuring production efficiency of small firms in Pakistan”, World Development 26(1)” 155-169.
37.Caves, D. W., L. R. Christensen and W. E. Diewert (1982) “The economic theory of index numbers and the measurement of input, output and productivity”, Econometirca 50: 1393-1414.
38.Chandra, P., W. W. Cooper and A. Rahman. (1998) “Using DEA to evaluate 29 Cabadian textile companies-Considering returns to scale”, International Journal of Production Economics 54(2): 129-141.
39.Charnes, A. and W. W. Cooper (1962) “Programming with linear fractionals”, Naval Res. Logistics Quarterly 9: 181-186.
40.Charnes, A., W. W. Cooper and E. Rhodes (1978) “Measuring the efficiency of decision making units”, European Journal of Operational Research 2: 429-444.
41.Charnes, A., W. W. Cooper and E. Rhodes (1981) “Evaluation program and managerial efficiency: An application of data envelopment analysis to program follow through”, Management Science 27(6): 668-697.
42.Charnes, A., W. W. Cooper, L. M. Seiford and J. Stutz. (1982) “A multiplicative model for efficiency analysis”, Socio-Economic Planning Sciences 16(5): 223-224.
43.Charnes, A., W. W. Cooper, B. Golany and L. M. Seiford (1985) “Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions”, Journal of Econometrics 30:91-107.
44.Charnes, A., W. W. Cooper, Q. L. Wei and Z. M. Huang. (1989) “Cone ratio data envelopment analysis and multi-objective programming”, International Journal of Systems Science 20(7): 1099-1118.
45.Chen, Y. (2003) “A non-radial Malmquist productivity index with an illustrative application to Chinese major industries”, International journal of Production Economics 83: 27-35.
46.Coelli, T. J. (1996a) “A guide to FRONTIER Version 4.1: A computer program for frontier production function estimation”, CEPA working paper 96/07, Department of Econometrics, University of New England, Armidale.
47.Coelli, T. J. (1996b) “A guide to DEAP Version 2.1: A data envelopment analysis (computer) program, CEPA working paper 96/08, Department of Econometrics, University of New England, Armidale.
48.Coelli, T. J., D. S. Prasada Rao and G. E. Battese (1998) An introduction to efficiency and productivity analysis, Kluwer Academic Publishers, Boston.
49.Cook, W. D., M. Kress and L. M. Seiford. (1993) “On the use of ordinal data in data envelopment analysis”, Journal of the Operational Research Society 44(2): 133-140.
50.Cook, W. D., M. Kress and L. M. Seiford. (1996) “Data envelopment analysis in the presence of both quantitative and qualitative factors”, Journal of the Operational Research Society 47:945-953.
51.Cooper, W. W. and K. Tone (1997) “Measure of inefficiency in data envelopment analysis and stochastic frontier estimation”, European Journal of Operational Research 99: 72-88.
52. Cooper, W. W., K. S. Park and G. Yu. (1999) “IDEA and AR-IDEA: Models for dealing with imprecise data in DEA”, Management Science 45(4): 597-607.
53.Cooper, W. W., L. M. Seiford and K. Tone. (2000) “Data Envelopment Analysis-A Comprehensive Text with Models, Applications, References and DEA-Solver Software”, Boston: Kluwer Academic Publishers.
54.Cooper, W. W., H. Deng, B. Gu, S. Li and R. M. Thrall (2001) “Using DEA to improve the management of congestion in Chinese industries (1981-1997)”, Socio-Economic Planning Sciences 35(4): 227-242.
55.Despotis, D. K. and Y. G. Smirlis. (2002) “Data envelopment analysis with imprecise data”, European Journal of Operational Research 140:24-36.
56.Dhawan, R. and G. Gerdes (1997) “Estimating technological change using a stochastic frontier production function framework: Evidence form U.S. firm-level data”, Journal of Productivity Analysis 8(4): 431-446.
57.Farrel, M. J. (1957) “The measurement of productive efficiency”, Journal of the Royal Statistical Society 120: 253-290. Part Ⅲ.
58.Färe, R. and S. Grosskopf (1985) “A nonparametric cost approach to scale efficiency”, Scandinavian Journal of Economics 87(4): 594-604.
59.Färe, R., S. Grosskopf, B. Lindgren and P. Roos. (1989) “Productivity Developments in Swedish hospitals:: A Malmquist output index approach”, in (Charnes A., W. W. Cooper, A. Y. Lewin and L. M. Seiford, ed.), Data envelopment analysis: Theory, methodology and applications, Kluwer Academic Publishers, Boston, pp 253-272.
60.Färe, R., S. Grosskopf, M. Norris and Z. Zhang (1994) “Productivity growth, technical progress and efficiency changes in industrialized countries”, American Economic review 84: 66-83.
61.Färe, R., S. Grosskopf and W. F. Lee. (1995) “Productivity in Taiwance manufacturing industries”, Applied Economics 27: 259-265.
62.Fielding, G. J. (1987) “Managing public transit strategically”, Jossey-Bass, Inc. San Francisco.
63.Fried, H. O., S. S. Schmidt and S. Yaisawarng. (1999) “Incorporating the operating environment into a nonparametric measure of technical efficiency”, The Journal of Productivity Analysis 12(3): 247-265.
64.Fried, H. O., C. A. K. Lovell, S. S. Schmidt and S. Yaisawarng. (2002) “Accounting for environmental effect and statistical noise in data envelopment analysis”, The Journal of Productivity Analysis 17(1): 157-174.
65.Ganley, J. A. and J. S. Cubbin (1992) “Public sector efficiency measurement: Applications of data envelopment analysis”, North Holland, Amsterdam.
66.Gleason, J. M. and D. T. Barnum (1982) “Toward valid measures of public sector productivity: Performance measures in Urban transit”, Management Science 28(4): 379-386.
67.Golany, B. and Y. Roll (1989) “An application procedure for DEA”, OMEGA: International Journal of Management Science 17: 237-250.
68.Gstach, D. (1996) “A new approach to stochastic frontier estimation: DEA+”, working paper No. 39, Department of Economics, Vienna University.
69.Hadri, K. and J. Whittaker (1999) “Efficiency, environmental contaminants and farm size: Testing for links using stochastic production frontiers”, Journal of Applied Economics 2(2): 337-356.
70.Hibiki, N. and T. Sueyoshi. (1999) “DEA sensitivity analysis by changing a reference set: Regional contribution to Japanese industrial development”, Omega, International Journal of Management Science 27(2): 139-153.
71.Huang, Y. G. L. (1989) “Using mathematical programming to assess the relative performance of the health care industry”, Journal of Medical Systems 13(3): 155-162.
72.Kao, C. and S. T. Liu (1992) “Reorganization of forest districts via efficiency measurement”, European Journal of Operational Research 58(3): 356-362.
73.Kao, C. (2000) “Short-run and long-run efficiency measure for multi-plant firms”, Annals of Operations Research 97(1): 379-388.
74.Kao, C. (2000) “Data envelopment analysis in resource allocation: An application to forest management”, International Journal of Systems Science 31(9):1059-1066.
75.Kim, S., J. Koo and Y. H. Lee (1999) “Infrastructure and production efficiency: An analysis on the Korean manufacturing industry”, Contemporary Economic Policy 17(3): 390-400.
76.Kumbhakar, S. C., A. Hesmati and L. Hjalmarsson (1997) “Temporal patterns of technical efficiency: Results from competitive models”, International Journal of Industrial Organization 15: 597-616.
77.Lewin, A. Y., R. C. Morey and T. J. Cook (1982) “Evaluating the administrative efficiency of courts”, Omega, International Journal of Management Science, 10(4): 401-411.
78.Lewin, A. Y. and J. W. Minton (1986) “Determining organizational effectiveness: Another look and an agenda for research”, Management Science 32(5): 514-538.
79.Lissitas, A. and A. Balmann. (2003) “Efficiency and productivity of farms in post-unification Germany”, EFITA Conference, 5-9. July 2003 Debrecen, Hungary, pp.439-450.
80.Lusigi, A. and C. Thirtle. (1997) “Total factor productivity and the effects of R&D in African agriculture”, Journal of International Development 9(4): 529-538.
81.Ma, J., D. G. Evans, R. J. Fuller and D. F. Stewart. (2002) “Technical efficiency and productivity change of China’s iron and steel industry”, International journal of Production Economics 76: 293-312.
82.Mahadevan, R. (2002) “A DEA approach to understanding the productivity growth of Malaysia’s manufacturing industries”, Asia Pacific Journal of Management 19(4): 587-600.
83.Mao, W. and W. W. Koo. (1997) “Productivity growth, technology progress and efficiency change in Chinese agriculture after rural economic reforms: A DEA approach”, China Economic Review 8(2): 157-174.
84.McCarty, T. and S. Yaisawarng. (1993) “Technical efficiency in New Jersey school districts”, In Fried, Lovell and Schmidt (eds.), The measurement of productive efficiency: Techniques and applications, New York: Oxford University Press, pp 271-287.
85.Narasimhan, R., S. Talluri and D. Mendez (2001) “Supplier evaluation and rationalize via data envelopment analysis: An empirical examination”, Journal of Supply Chain Management 37(3): 28-37.
86.Nyrud, A. Q. and S. Baardsen. (2003) “Production efficiency and productivity growth in Norwegian sawmilling”, Forest Science 49(1): 89-97.
87.Piesse, J. and C. Thirtle (2000) “A stochastic frontier approach to firm level efficiency, technological change and productivity during the early transition in Hungary”, Journal of Comparative Economics 28(3): 473-501.
88.Pricewaterhouse Coopers (2002) http//www.pwcglobal.com
89.Retzlaff-Roberts, D. L. (1996) “Relating discriminate analysis and data envelopment analysis to one another”, Computers & Operations Research 23(4): 311-322.
90.Seiford, L. M. (1997) “A bibliography for data envelopment analysis (19778-1996)”, Annals of Operations Research 73: 393-438.
91.Seiford, L. M. and J. Zhu. (1998) “Identifying excesses and deficits in Chinese industrial productivity (1953-1990): A weighted data envelopment analysis approach”, Omega, International Journal of Management Science 26(2): 279-296.
92.Sexton, T. R., R. H. Silkman and A. J. Hogan. (1986) “Data envelopment analysis: Critique and extensions”, In (Silkman R. H. ed.), Measuring efficiency: An assessment of data envelopment analysis, San Francisco, Jossey-Bass Inc., Publishers, pp 73-105.
93.Shephard, R. W. (1970) Theory of cost and production functions, Princeton University press, Princeton.
94.Shetehan, M. (1997) “The evolution of technical efficiency in the Northern Ireland manufacturing sector, 1973-1985”, Scottish Journal of Political Economy 44(1): 59-81.
95.Singh, S., T. Coelli and E. Fleming (1999) “Total factor productivity change in dairy processing plants in India”, paper presented at AARES 43rd Annual Conference held on 20-22 January, Christchurch, New Zealand.
96.Stone, M. (2002) “How not to measure the efficiency of public services (and how one might)(with discussion)”, Journal of the Royal Statistical Society-Series A Statistics in Society 165(3): 405-434.
97.SubbaNarasimha, P. N., S. Ahmad and S. N. Mallya, (2003) “Technological knowledge and firm performance of pharmaceutical firms”, Journal of Intellectual Capital 4(1): 20-33.
98.Sueyoshi, T. (1999) “DEA non-parametric ranking test and index measurement: Slack-adjusted DEA and an application to Japanese agriculture cooperatives”, Omega, International Journal of Management Science 27(3): 315-326.
99.Thirtle, C., J. Piesse and J. Turk. (1996) “The productivity of private and social farms: Multilateral Malmquist indices for Slovene dairing enterprises”, The Journal of Productivity Analysis 7(4): 447-460.
100.Thompson, R. G., F. D. Jr. Singleton, R. M. Thrall and B. A. Smith. (1986) “Comparative site evaluations for locating a high-energy physics lab in Texas”, Interfaces 16(6):35-49.
101.Tone, K. (1993) “An epsilon-free DEA and a new measure of efficiency”, Journal of the Operational Research Society of Japan 36(3): 167-174.
102.Tone, K. (2001) “A slacks-based measure of efficiency in data envelopment analysis”, European Journal of Operational Research 130(3): 498-509.
103.Viitala, Esa-Jussi and H. Hanninen (1998) “Measuring the efficiency of public forest organizations”, For. Sci. 44(2): 298-307.
104.Wong, H. B. and J. E. Beasley. (1990) “Restricting weight flexibility in data envelopment analysis”, Journal of the Operational Research Society 41(9): 829-835.
105.Wu, Y. (1995) “The productive efficiency of Chinese iron and steel firms”, Resources Policy 21(3): 215-222.
106.Wu, Y. (2000) “Is China’s economic growth sustainable? A productivity analysis”, China Economic Review, 11: 278-296.
107.Yin, R. S. (1998) “DEA: A new methodology for evaluating the performance of forest products producers”, Forest Prod. J. 48(1): 29-34.
108.Yin, R. S. (1999) “Production efficiency and cost competitiveness of pulp producers in the Pacific Rim”, Forest prod. J. 49(7/8): 43-49.
109.Zhu, J. (1996) “DEA/AR analysis of the 1988-1989 performance of the Nanjing textiles corporation”, Annals of Operation Research 66: 311-335.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top