跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱盛祺
研究生(外文):Sheng-Chi Chu
論文名稱:黏帚黴菌GliocladiumvirensWJGV2、TLGV22之生物特性及其在病害防治應用厚膜孢子製劑之量產
論文名稱(外文):Biological characteristics of Gliocladium virens WJGV2、TLGV22 and the mass production of chlamydospore formulation for disease control
指導教授:曾德賜
指導教授(外文):Dean Der-Syh Tzeng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:黏帚黴菌厚膜孢子病害防治
外文關鍵詞:Gliocladium virensChlamydosporeDisease control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
黏帚黴菌Gliocladium virens WJGV2、TLGV22之生物特性及其在病害防治應用厚膜孢子製劑之量產
朱盛祺
本研究之目的在篩選本土性優異黏帚黴菌菌株,且以傳統攪拌式發酵槽建立厚膜孢子製劑之液體發酵量產技術,以供病害防治之應用,並期作為此類益生性微生物資源開發應用之參考。經由厚膜孢子產孢能力與促進甘藍幼苗植株生長測試,對三個木黴菌屬菌株與四個黏帚霉黴菌屬菌株進行篩選,最後選用分別由大里、烏日水稻根圈土壤分離獲得,生長產孢特性與促進植株生長俱優異之黏帚黴菌 TLGV22 與 WJGV2兩菌株作為日後試驗之供試菌株,再經於PSA平板行對峙培養測試,證實對於立枯絲核菌Rhizoctonia solani AG1、AG4及腐霉病菌Pythium aphanidermatum均有不錯的拮抗能力;酵素活性測試並發現,兩菌株對澱粉、幾丁質、蛋白質及纖維素等天然基質均有很好的分解能力,而果膠分解酵素(PG與PTE)及脂質分解酵素活性則均未檢測出;在PSA平板上,兩菌株菌絲體皆呈無色且分支繁複,分生孢子梗直立或略微彎曲,瓶狀孢子梗呈圓錐狀,著生於分生孢子梗頂端,分生孢子均為綠色或黃綠色,橢圓型至卵圓型,單孢單室具有黏性,常在瓶狀梗上集結成一團;上述產孢型態特性檢視結果,顯示此二菌株與Domsh氏、Harman氏與Kubicek氏等所描述之Gliocladium virens特性一致。進一步利用PCR增幅技術,由兩菌株個別選殖其核糖體DNA內轉錄區間(Internal transcribed spacer,ITS),所獲得包含ITS全長的652 bp片段 ,分別將其解序完成後與NCBI之GenBank既有資料比對,證實與已登錄之9個Gliocladium virens (syn. Trichoderma virens) 相似度均高達99-100%,綜合上述產孢型態與核糖核酸ITS區序列分析結果,將兩菌株鑑定為G. virens。於產孢應用上,TLGV22 與 WJGV2兩菌株已經證實同樣具有優異的厚膜孢子產孢特性,利用本研究正建立改進中的培養技術,於搖瓶液態培養7天,厚膜孢子產量均可達到每毫升1.5X108個以上,所產出之成熟厚膜孢子大小約為9.18-10.8μm,此一厚膜孢子懸浮液經4℃低溫儲藏六個月,孢子的存活數仍有每毫升107個以上,但在室溫下儲藏則其安定性並不如理想;擴大至50 L發酵槽量產測試厚膜孢子,發現添加碳素源含量較高的M生長因子、導入一厚膜孢子轉化促進因子(CSF)與CSF用量之最適化均有助於促進厚膜孢子的分化和提升產量,目前培養5天產量已可達108/ml以上。且此一技術平台於木黴菌與黏帚黴菌厚膜孢子量產之泛用性與750 L發酵槽擴大量產之應用性也已獲證實。所生產的厚膜孢子製劑可應用於葉部噴灑、土壤澆灌、種子浸種與被覆等處理,在溫室盆缽試驗中,利用WJGV2與TLGV22菌株所研製之厚膜孢子製劑經溫室試驗,已證實對於甘藍和水稻幼苗均有顯著的生長促進效果,其中以WJGV2菌株之厚膜孢子培養液經50倍稀釋後用於甘藍、水稻種子種植前浸種處理,其中甘藍經種植10週後調查,處理組較以水處理的對照組鮮重增加約115.2%,另外水稻則經種植2週後調查,其處理組株高增加約58.9%,處理組與對照組間差異均達顯著水準;另外在病害防治應用上,利用TLGV22與 WJGV2菌株之厚膜孢子培養液,以浸種或澆灌的方式處理甘藍防治Rhizoctonia solani AG4之立枯病,效果均顯著,對照組的存活率為13.87%,WJGV2浸種50倍稀釋處理組約較對照組提高38.91%達最顯著,而TLGV22澆灌2000倍稀釋處理組約較對照組提高33.35%;以 105 chlamydospores/ml濃度澆灌處理於人工接種Pythium aphanidermatum的甘藍幼苗,其對照組的存活率為70%,TLGV22處理組約較對照組提高21.2%,WJGV2更提高30%,此些防治效果顯示,利用兩供試黏帚黴菌菌株所研製之厚膜孢子製劑在此兩大重要土傳性真菌病害之防治,確具顯著效果。另外在水稻紋枯病防治效果評估方面,利用製劑滴施處理能有效降低田間紋枯病之發病率,較對照組降低7.85%,或減緩已感病植株病勢之蔓延而使產量損失減少,較對照組產量平均濕重增加10.9%、乾重增加12.9%、稔實率增加9.8%,證實WJGV2厚膜孢子液劑確實具有防治水稻紋枯病之應用潛力。
Biological characteristics of Gliocladium virens WJGV2 and TLGV22 and the mass production of chlamydospore formulation for disease control
Sheng-Chi Chu
The investigation was aimed to establish technique platform for exploring the Gliocladium/Trichoderma microbial resources for plant disease control application. A primed goal attempted was to produce the robustious chlamydospore biomass, rather than the conidial formulation, by a traditional stirrer tank fermentor. A total of seven antagonistic Gliocladium/Trichoderma strains with superior growth and conidiation characteristics were screened for the competence of chlamydospore production and plant growth promotion. Gliocladium strains WJGV2 and TLGV22 were among them the best in promoting the growth of cabbage seedlings and in chlamydospore productivity. The two strains are both rhizosphere isolates from rice. They both showed superior antagonisity on Rhizoctonia solani AG1, AG4, and Pythium aphanidermatum. They also expressed great hydrolytic activities on macro biomolecules including starch, protein, chitin and cellulose, whereas not on pectin or phospholipid. The morphological characteristics of mycelial growth and conidiation indicated the 2 strains accorded well the species characteristics of Gliocladium virens described by Domsh, Harman and Kubicek. The internal transcribed spacer (ITS) region rDNA of the two strains that include ITS1, 5.8S rDNA, and ITS2, was cloned and sequenced. The result obtained from sequence analysis indicated the cloned sequences from these 2 test strains were 652 bp in length which shared 99-100 % identity as compared to that of the 9 existing Gliocladium virens (syn. Trichoderma virens ) registed in GenBank of NCBI. The high identity of full length rDNA ITS region comparing to that known in GenBank further strengthen the view that to two test strains are members of G. virens.
For mass production of chlamydospore formulation, improvement of cultured medium constituents was attempted. In a flask shaking culture system, the amendment of carbohydrate-enriched growth factor appeared to increase the chlamydospore production greatly; whereas the amendment of N-enriched growth factors Y & F, on the contrary, greatly reduced it. The yield of chlamydospore in flask culture system reached 1.5X108 /ml 7 days after inoculation, and size of the produced spores ranged from 9.2 to 10.8 μm in diameter. The viable chlamydospores in the culture dropped to 107 /ml level gradually after 6 months storage at 4℃, indicating the need of protective measurement in the formulation process. In 50 L stirrer tank fermentor system, the improved broth medium developed in flask culture system was found repeatable; the yield of chlamydospore reached 108 level as expected. However, the production protocol takes 8-9 days operation. A chlamydospore formation stimulation factor (CSF) was found useful in initiating the sporulation process. The timing and dosage of CSF application had been optimized. With the introduction of 0.25 units CSF at the starting point of the culture process, the chlamydospore yield reached the expected 108 /ml level in 5 days. The improved protocol established significantly shortened the production time and greatly improved the spore uniformity. The usefulness of the established technique platform have been testified in 50 L tank system with the use of 2 strains of Trichoderma spp. and 2 strains of Gliocladium spp., and as well with test strain WJGV2 in a 750L tank fermentor.
The liquid formulation produced can be applied by foliar spray, soil drenching and seed soaking/coating. With the application by soil drenching and/or seed soaking of WJGV2 and TLGV22 each at appropriate concentration, substantial growth promotion on cabbage and rice has been demonstrated. In the case of cabbage, the seed soaking with WJGV2 formulation at 50X dilution led to 115.2 % increase in fresh weight 10 weeks after treatment. Whereas for rice, the same treatment led to 58.9 % increase in plant height 2 weeks after application. In a greenhouse system, the application of both strains was also shown effective in controlling Rhizoctonia solani AG4 and Pythium aphanidermatum seedling damping off infections on cabbage. For cabbage seeded on substrates artificially inoculated with R. solani AG4, seed soaking with WJGV2 at 50X dilution led to a 38.9 % increase in survival; likewise, soil drenching with TLGV22 at 2000X in dilution led to a 33.4 % survival increase. As for seedling damping off caused by P. aphanidermatum, soil drenching by WJGV2 and TLGV22 led to 30 % and 21.2 %, increase respectively, in percent survival. The chlamydospore formulation developed from the 2 strains thus appeared to be effective as biofungicide in the control of these 2 important soil-borne fungal pathogens. Moreover, the possible application of these 2 attempted biofungicides in the control of sheath blight on rice (R. solani AG1) was also investigated. The test formulation was applied by dripping as liquid formulation and by spraying as floatable granule formulation. The applied biofungicide treatment significantly reduced the sheath blight infection and resulted in substantial yield increases. Their potential for the control of rice sheath blight appeared to be promising and worth great attention.
目錄
壹、前言----------------------------------------------------1
貳、前人研究------------------------------------------------3
參、材料與方法---------------------------------------------14
一、供試菌株及植物材料-----------------------------------14
二、供試藥品材料來源-------------------------------------14
三、供試菌株之分離與篩選---------------------------------15
(一) 厚膜孢子產能比較--------------------------------15
(二) 厚膜孢子發酵液對甘藍幼苗生長之影響--------------16
四、對重要土傳病原之拮抗活性測試-------------------------16
五、生物巨分子分解特性測試---------------------------------17
六、WJGV2、TLGV22兩供試菌株之生物特性與種之鑑定------------19
七、rDNA ITS區間序列分子特性之比對-------------------------19
(一) 供試菌株總量DNA之抽取---------------------------19
(二) 含5.8S rDNA ITS 區間序列之增幅------------------20
(三) rDNA增幅片段之選殖解序------------------------- 20
八、五種不同培養配方對厚膜孢子形成之影響-------------------22
九、不同濃度菌絲接種源對厚膜孢子形成之影響-----------------22
十、厚膜孢子擴大量產技術之改進-----------------------------23
(一) 代號Y、M、F三種生長因子之添加對供試菌株WJGV2厚膜孢
子形成之影響------------------------------------23
(二) WJGV2與TLGV22供試菌株於生長最適化培養基厚膜孢子產量
比較--------------------------------------------23
(三) 不同時間導入厚膜孢子轉化促進因子(CSF)對厚膜孢子形 成之影響--------------------------------------- 23
(四) CSF用量對厚膜孢子形成之影響---------------------24
(五) CSF最佳化流程於黏帚黴菌/木黴菌厚膜孢子量產之泛用性-- -----------------------------------------------24
(六) CSF最佳化流程擴大到750 L發酵槽之應用性----------24
十一、厚膜孢子之儲藏安定性-----------------------------------------------------------25
十二、厚膜孢子製劑對甘藍與水稻幼苗生長之影響------------------------------- 25
(一) 浸種處理對甘藍幼苗生長之影響-------------------------------------------25
(二) 澆灌處理對甘藍幼苗生長之影響-------------------------------------------25
(三) 被覆處理對甘藍幼苗生長之影響-------------------------------------------26
(四) 浸種處理對水稻幼苗生長之影響-------------------------------------------26
十三、對甘藍立枯絲核菌Rhizoctonia solani AG4幼苗立枯病之防治效果-------26
(一) 立枯絲核菌帶菌泥碳土之製作--------------------------------------------- 26
(二) 浸種與澆灌處理對幼苗立枯病之防治效果------------------------------ 27
(三) 澆灌、被覆及浸種處理對幼苗立枯病之防治效果----------------------27
十四、對甘藍腐霉病菌Pythium aphanidermatum幼苗猝倒病之防治效果------27
(一) 腐霉病菌帶菌泥碳土之製作-------------------------------------------------27
(二) 澆灌處理對甘藍幼苗猝倒病之防治效果--------------------------------- 28
十五、WJGV2厚膜孢子液劑、漂浮性粒劑製作及其在水稻紋枯病之防治
應用---------------------------------------------------------------------------------- 28
(一) 厚膜孢子液劑與漂浮性粒劑之製作--------------------------------------- 28
(二) 液劑與漂浮性粒劑施用對台農71號(TNG71) 水稻紋枯病之防
治效果------------------------------------------------------------------------- 28
(三) 液劑滴施對台梗8號(TK8)水稻紋枯病之防治效果-------------------- 29
肆、結果----------------------------------------------------------------------------------------30
一、 供試菌株之分離與篩選------------------------------------------------------------- 30
二、WJGV2、TLGV22兩供試菌株生物特性-----------------------------------------30
(一) 對重要土傳病原之拮抗活性-------------------------------------------------31
(二) 生物巨分子分解特性----------------------------------------------------------31
(三) 產孢型態特性與種之鑑定----------------------------------------------------31
三、 rDNA ITS區間序列分子特性之比對--------------------------------------------32
四、五種不同培養配方對厚膜孢子形成之影響------------------------------------33
五、不同濃度菌絲接種源對厚膜孢子形成之影響---------------------------------33
六、厚膜孢子擴大量產技術之改進----------------------------------------------------33
(一) 代號Y、M、F三種生長因子之添加對供試菌株WJGV2厚膜孢
子形成之影響------------------------------------------------------------------- 33
(二) WJGV2與TLGV22供試菌株於生長最適化培養基厚膜孢子產量
比較------------------------------------------------------------------------------- 34
(三) 不同時間導入厚膜孢子轉化促進因子(CSF)對WJGV2菌株厚膜
孢子形成之影響---------------------------------------------------------------- 34
(四) CSF用量對厚膜孢子形成之影響--------------------------------------------35
(五) CSF最佳化流程於黏帚黴菌/木黴菌厚膜孢子量產之泛用性----------36
(六) CSF最佳化流程擴大到750 L發酵槽之應用性--------------------------36
七、厚膜孢子之儲藏安定性------------------------------------------------------------37
八、厚膜孢子製劑對甘藍與水稻幼苗生長之影響---------------------------------37
(一) 浸種處理與澆灌處理對甘藍幼苗生長之影響----------------------------37
(二) 被覆處理對甘藍幼苗生長之影響-------------------------------------------38
(三) 浸種處理對水稻幼苗生長之影響-------------------------------------------38
九、厚膜孢子製劑對甘藍立枯絲核菌Rhizoctonia solani AG4幼苗立枯病
之防治效果---------------------------------------------------------------------------38
(一) 以WJGV2與TLGV22菌株行浸種與澆灌處理之防治效果------------38
(二) 以WJGV2菌株行澆灌、種子被覆及浸種處理之防治效果-----------39
十、厚膜孢子製劑對甘藍腐霉病菌Pythium aphanidermatum幼苗猝倒病
之防治效果-------------------------------------------------------------------------- 39
十一、WJGV2厚膜孢子製劑滴施與漂浮性粒劑噴佈對水稻紋枯病之防治
效果-田間試驗---------------------------------------------------------------------- 39
(一) 液劑滴灌與漂浮性粒劑噴佈對台農71號(TNG71) 水稻紋枯病
之防治效果---------------------------------------------------------------------- 40
(二) 液劑滴灌對台梗8號(TK8)水稻紋枯病之防治效果---------------------40
伍、討論-----------------------------------------------------------------------------------------41
陸、中文摘要-----------------------------------------------------------------------------------49
柒、英文摘要-----------------------------------------------------------------------------------51
捌、參考文獻-----------------------------------------------------------------------------------55
玖、圖表說明-----------------------------------------------------------------------------------62
拾、附錄-----------------------------------------------------------------------------------------89
參考文獻
李開展。2003。黏帚黴菌Gliocladium sp. SG22菌株厚膜孢子製劑之量產與病害防治應用。國立中興大學植物病理學研究所碩士論文。78頁。
呂理燊。1997。臺灣植物病害名彙增補篇(1991-1995)。中華植物保護學會與中華 民國植物病理學會刊印。43 pp。
杜金池,張義璋、王仲文。1979。水稻紋枯病菌之生態研究。科學發展月刊7 : 1208-1219。
杜金池,張義璋。1981。水稻紋枯病原菌之生態及生物防治研究。台南農改場研究彙報 15 : 1-24。
杜金池,張義璋。1983。近年來本省Rhizoctonia屬病原真菌研究之回顧。植保會刊 25 : 213-229。
林昇慧。2001。木黴菌為甘藍幼苗立枯病管理與幼苗生長促進之主要生物因子。國立中興大學植物病理學研究所碩士論文。90頁。
陳昇明、郭文良。1985。枯草桿菌對水稻紋枯病菌之抗生作用及防治效應。
植保會刊 27:95-103。
陳金堯。1988。應用木黴菌及黏帚黴菌防治土壤傳播性病害。國立中興大學植物 病理學研究所碩士論文。台中。109頁。
黃睿志。2002。黏帚黴菌G-8防治立枯絲核菌引起之植物病害。國立中興大學植物病理學研究所博士論文。167頁。
曾耀徵。2001。黏帚黴菌生物殺菌劑量產技術之建立及在病害防治之應用。國立中興大學植物病理學研究所碩士論文。90頁。
臺灣農業年報(八十六年版)。1997。80-81、241頁。台灣省農林廳出版。
劉顯達、鄭光哲。1985。水稻紋枯病生物防治施用拮抗真菌Trichoderma
harzianum 作生物防治因子。屏東農專學報26:1-7。
蔡雲鵬。1991。臺灣植物病害名彙修訂三版。中華植物保護學會與中華民國植物 病理學會刊印。604 pp。
羅朝村。1996。生物防治在作物病害管理上的應用與發展。植物保護新科技研討 會專刊。141-150。
Ainsworth, G. C., Sparrow, F. K., and Sussman, A. S. 1973. The Fungi: An Advanced Treatise. Academic Press, New York. 615pp.
Altomare, C., Norvell, W. A., Bjoerkman, T., and Harman, G. E. 1999. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. and Environ. Microbiol. 65:2926-2933.
Atlas, R. M., and Bartha, R. 1993. Microbial Ecology : Fundamentals and Applications. 3rd ed. The Benjamin/Commings Publishing Company, Inc. Redwood City, CA. 533 pp.
Avni, Adi., Bailey, B. A., Mattoo, A. K., and Anderson, J. D. 1994. Induction of ethylene biosythesis in Nicotiana tabacum by Trichoderma viride xylanase is correlated to the accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase transcripts. Plant Physiol. 106:1049-1055.
Aziz, N. H., El-Fouly, M. Z., El-Essawy, A. A., and Khalaf, M. A. 1997. Influence of bean seedling root exudates on rhizosphere colonization by Trichoderma lignorum for the control of Rhizoctonia solani. Bot. Bull. Acad. Sin. 38:33-39.
Bakark, R., Elad, Y., Mirelman, D., and Chet, I. 1985. Lectins: a possible basis for specific recognition in the interaction of Trichoderma and Sclerotium rolfsii. Phytopathology 77:458-462.
Baker, K. F., and Cook, R. J. 1974. Biological Control of Plant Pathogens. Freeman & Company, San Francisco. 433pp.
Baker, R. 1989. Improved Trichoderma spp. for promoting crop productivity. Trends Biotechnol. 7:458-462.
Bjoerkman, T., Blanchard, L. M., and Harman, G. E. 1998. Growth enhancement of shrunk-2 (sh2) sweet corn by Trichoderma harzianum 1295-22: effect of environmental stress. J. Amer. Soc. Hort. Sci. 123:35-40.
Bulat, S. A., Lubeck, M., Mironenko, N., Jensen, D. F., and Lubeck, P. S. 1998. UP-PCR analysis and ITS1 ribotyping of strains of Trichoderma and Gliocladium. Mycol. Res. 102:933-943.
Castilla, N., and Savary, S. 2000a. Epidemiology of rice sheath blight caused by Rhizoctonia solani Kuhn under tropical conditions. Third international Symposium on Rhizoctonia. P. 66.(abstract)
Castilla, N., and Savary, S. 2000b. Effect of spatial pattern of initial infections on the epidemics of rice sheath blight caused by Rhizoctonia solani Kuhn. Third international Symposium on Rhizoctonia. P. 67.(abstract)
Chet, I., and Baker, R. 1980. Mechanism of biological control in soil suppressive to Rhizoctonia solani. Phytopathology 70:404-412.
Dennis, C., and Webster, J. 1971 Antagonistic properties of species-groups of Trichoderma. I. Production of non-volatile antibiotics. Brit. Mycol. Soc. Trans. 57: 25-39.
Devi, T. V. , Vizhi, R. M., Sakthivel, N., and Gnanamanickam, S. S. 1989. Biological control of sheath-blight of rice in India with antagonistic bacteria. Plant and Soil. 119: 325-330.
Domsch, K. H., Gams, W., and Anderson, T. H. 1993. Compendium of Soil Fungi. Federal Agricultural Research Centre. Germany. 859pp.
Elad, Y. 2000. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot. 19:709-714.
Elad, Y., Katan, J., and Chet, I. 1980. Physical, biological, and chemical control integrated for soilborne diseases in potato. Phytopathology 70:418-422.
Eyal, J., Baker, C. P., Reeder, J. D., Devane, W. E., and D., Lumsden R. 1997. Large-scale production of chlamydospores of Gliocladium virens GL-21 in submerged culture. J. Ind. Microbiol. Biot. 19:163-168.
Garret, S. D. 1965. Towards Biological Control of Soil-borne Plant Pathogens. University of California Press, Berkeley. 571 pp.
Gurr, S. G., McPherson, M. J., and Bowles, D. J. 1992. Molecular Plant Pathology vol. I. P67-69. Oxford University Press, New York. 216 pp.
Harkin, L., and Anagnostakis, S. L. 1975. The use of solid media for detection of enzyme production by fungi. Mycologia 67: 597-607.
Hillis, D. M., and Dixon, M. T. 1991. Ribosomal DNA molecular evolution and phylogenetic inference. Q. Rev. Biol. 66:411-453.
Homer, D. W. 1988. Trichoderma as Biocontrol Agent. CRC Press, Boca Raton. 211 pp.
Howell, C. R. 1987. Relevance of mycoparasitism in biological control of Rhizoctonia solani by Gliocladium virens. Phytopathology 77:992-994.
Howell, C. R., and Stipanovic, R. D. 1994. Effect of sterol biosynthesis inhibitors on phytotoxin (viridiol) production by Gliocladium virens in culture. Phytopathology 84:969-972.
Howell, C. R., Hanson, L. E., Stipanovic, R. D., and Puckhaber, L. S. 2000. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248-252.
Huang, J. H., and Lin, Y. S. 1998. Root rot of vegetable pea seedlings in soilless cultural system caused by Pythium aphanidermatum and P. ultimum. Plant Pathol. Bull. 40:397-408.
Hussain, R., Black Colin, R., Talyor, I, B., and Roberts J., A. 1999. Soil compaction. A role for ethylene in regulating leaf expansion and shoot growth in tomato? Plant Physiol. 121:1227-1237.
Inbar, J. , and Chet, I. 1994. The role of recognition in the induction of specific chitinases during mycoparasitism by Trchoderma harzianum. Eur. J. Plant Pathol. 100:337-346.
Jackson, A. M., Whipps, J. M., Lynch, J. M., and Bazin, M. J. 1991. Effect of some carbon and nitrogen sources on spore germination, production of biomass and antifungal metabolites by species of Trichoderma and Gliocladium viren antagonistic to Sclerotium cepivorum. Biocontrol Sci. Techn. 1:43-51.
Kleifeld, O., and Chet, I. 1992. Trichoderma harzianum-interaction with plants and effect on growth response. Plant Soil 144:267-272.
Kohl, J., Gerlagh, M., Haas, B. H., and Krijger, M. C. 1998. Biological control of Botrytis cinerea in cyclamen with Ulocladium atrum and Gliocladium roseum under commercial growing conditions. Phytopathology 88: 568-575.
Kubicek, C. P., and Harman G. E. 1998. Trichoderma and Gliocladium. University of Technology, Vienna, Austria. 278pp.
Kutchma, A. J., Roberts, M. A., Knaeble, D. B., and Crawford, D. L. 1998. Small-scale isolation of genomic DNA from Streptomyces mycelia or spores. Biotechniques. 24:452-457.
Larkin, R. P., and Fravel, D. R. 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis. 82:73-80.
Lewis, J. A., and Papavizas, G. C. 1981. Chlamydospore formation by Trichoderma species. Phytopathology 71:890.
Lewis, J. A., and Papavizas, G. C. 1984. Chlamydospore formation by Trichoderma spp. in natural substrates. Can. J. Microbiol. 30:1-7.
Lewis, J. A., and Papavizas, G. C. 1987. Reduction of inoculum of Rhizoctonia solani in soil by germlings of Trichoderma hamatum. Soil Biol. Biochem. 19:195-201.
Lubeck, M., Poulsen, S. K., Lubeck, P. S., Jensen, D. F., and Thrane, U. 2000. Identification of Trichoderma strains from building materials by ITS1 ribotyping, UP-PCR fingerprinting and UP-PCR cross hybridization. FEEM Microbiol. Lett. 185:129-134.
Lumsden, R. D., and Locke, J. C. 1989. Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani with Gliocladium virens in soilless mix. Phytopathology 79:361-366.
Lumsden, R. D., and Walter, J. F. 1996. Development of Gliocladium virens for damping-off disease control. Can. J. Plant Pathol. 18:463-468.
Lumsden, R. D., Ridout, C. J., Vendemia, M. E., Harrison, D. J., Waters, R. M., and Walter, J. F. 1992. Characterization of major secondary metabolites produced in soilless mix by a formulated strain of the biocontrol fungus Gliocladium virens. Can. J. Microbiol. 38:1274-1280.
MacKenzie, A. J., Ownley, B. H., Srtarman, T. W., and Windham, M. T. 2000. Effect of delivery method and population size of Trichoderma harzianum on growth response of unrooted chrysanthemum cuttings. Can. J. Microbiol. 46:730-735.
Mao, W., Lewis, J. A., Lumsden, R. D., and Hebbar, K, P. 1998. Biocontrol of selected soilborne diseases of tomato and pepper plants. Crop Prot. 17:535-542.
Martin, F. N. 1995. Pythium. pp. 17-30. In: Pathogenesis and Host Specificity in Plant Disease, Vol. II. Komoto, K., U. S. Singh, and R. P. Singh, (Eds.) Pergamon, Oxford. 572pp.
Mihuta-Grimn, L., and Rowe, R. C. 1986. Trichoderma spp. as biocontrol agents of Rhizoctonia damping-off of radish in organic soil and comparison of four delivery systems. Phytopathology 76:306-312.
Ogoshi, A. 1975. Grouping of Rhizoctonia solani Kuhn and their perfect stage. Rev. Plant Prot. Res. 8:93-103.
Okon, Y. , Chet, I., and Henis, Y. 1973. Effects of lactose, ethanol and cycloheximide on the translation pattern of radioactive compounds and on Sclerotium rolfsii. J. Gen. Microbiol. 74:251-258.
Ousley, M. A., Lynch, J. M., and Whipps, J. M. 1994. Potential of Trichoderma spp. as consistent plant growth stimulators. Biol. Fert. Soils 17: 85-90.
Papavizas, G. C. 1985. Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu. Rev. Phytopathol. 23:23-54.
Ritz, K. 1995. Growth responses of some soil fungi to spatially heterogeneous nutrients. FEEM Microbiol. Ecol. 16:269-280.
Sambrook, D., Nicklen, S., and Coulson, A. R. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, New York. pp.1.21-1.37.
Samuels, G. J. and Rehner, S. A. 1993. Toward a concept of genus and species of Trichoderma. American Chemical Society, Washington, DC, pp. 186-188.
Schroers, H. J., Samules, G. J., Seifert, K. A., and Gams, W. 1999. Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia 91:365-385.
Shahjahan, A. K. M., Fabeller, N., and Mew, T. W. 1990. Effect of crop management practices on the sclerotia dynamics of Rhizoctonia solani in upland rice. Bangladesh J. Plant Pathol. 6:19-23.
Shanmugam, V., Sriram, S., Babu, S., Nandakumar, R., Raguchander, T., Balasubramanian, P., and Samiyappan, R. 2001. Purification and characterization of an extracellular α-glucosidase protein from Trichoderma viride which degrades a phytotoxin asscociated with sheath blight disease in rice. J. Appl. Microbiol. 90:320-329.
Sriram, S., Raguchander, T., Babu, S., Nandakumar, R., Shanmugam, V., Vidhyasekaran, P., Balasubramanian, P., and Samiyappan, R. 2000. Inactivation of phytotoxin produced by the rice sheath blight pathogen Rhizoctonia solani. Can. J. Microbiol. 46:520-524.
Sundheim, L, and Tronsmo, A. 1988. Hyperparasitism in Biological Control. CRC Press, Boca Raton. 211 pp.
Vidhyasekaran, P., Ruby P. T., Samiyappan, R., Velazhahan, R., Vimala, R., Ramanathan, A., Paranidharan, V., and Muthukrishnan, S. 1997. Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen. Phytopathology 87:1258-1263.
Watanabe, T. 1937. Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. Soft Science Publications. Japan. 411pp.
Windham, M. T., Elad, Y., and Baker, R. 1986. A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 76:518-521.
Yedidia, I., Benhamou, N., and Chet, I. 1999. Inducton of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 65:1061-1070.
Yedidia, I., Benhamou, N., Kapulnik, Y., and Chet, I. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38:863-873.
Yu, M. C., Huang, Y. T., and Tsay, H. J. 1980. Disease development of rice sheath blight. Plant Prot. Bull. 22:263-267.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top