(3.237.20.246) 您好!臺灣時間:2021/04/15 09:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭玫秀
研究生(外文):Mei-Hsiu Kuo
論文名稱:離水逆境及低溫貯藏加速玫瑰切花老化
論文名稱(外文):Water Deficit Stress and Cold Storage Accelerate Senescence of Cut Roses
指導教授:林瑞松林瑞松引用關係
指導教授(外文):Ruey-Song Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:152
中文關鍵詞:玫瑰切花細胞膜低溫冷藏離水逆境乙烯呼吸率
外文關鍵詞:Cut rosesCell membraneCold storageWater deficit stressEthyleneRespiration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:1
本試驗利用黛安娜‘Noblesse’玫瑰切花商業栽培品種作為試驗材料,調查短暫離水處理後切花生理之變化,以及低溫乾藏後關鍵老化機制之探討,並針對冷藏後生理的劣變研發利用適合之藥劑加以改善。
切花離水後經低溫乾藏會造成品質的降低,離水8小時於瓶插第5天鮮重及吸水量皆呈現大幅下降趨勢,花朵無法完全綻放,並於瓶插第6天後萎凋。離水處理後呼吸率均會昇高,離水8小時於乙烯高峰達最大生成量0.75 nl/g/hr,萎凋期離水4、8小時離子滲漏率與其他處理組呈現顯著差異。復水初期水分潛勢及花瓣水分含量大幅上升,盛開期後皆逐漸下降,尤其離水處理組更加顯著。
切花乾藏期間隨著貯藏溫度的增加,呼吸率越旺盛花朵開張程度也越大,8℃貯藏期間於第8天產生乙烯高峰值0.69 nl/g/hr,對應ACC含量及ACO活性有相同趨勢,而2℃於貯藏期間皆無ACC的累積及乙烯生成。切花經貯藏後會造成ACC的累積,進而促使乙烯的大量生成及乙烯高峰的提早顯現,8℃貯藏後於瓶插第3天即出現乙烯高峰並高達1.34 nl/g/hr。經貯藏之切花在乙烯劇升後的1-2天相繼發生花朵老化。切花遭受低溫貯藏逆境後,會造成膜體性質的改變,以8℃貯藏者,回溫後即達到與對照組盛開期相同之微黏稠度數值2.24 poise,離子滲漏率之變化趨勢也呈現顯著差異。顯微鏡檢8℃貯藏兩週之花莖組織皮層及髓部細胞皆因失水而扭曲變形,使得花莖輸導功能受損,而造成貯藏後花瓣水分含量下降。
切花乾藏期間隨著貯藏溫度的增加,澱粉水解酵素的活性越高,切花生理代謝越旺盛花朵開張程度也越大,而碳水化合物的代謝也隨貯藏溫度而改變,此與呼吸率強弱有關。切花經低溫貯藏後,呼吸率較低落且呼吸率的變化趨勢也與未貯藏者有所不同,另外花瓣澱粉水解酵素之活性,經由8℃貯藏者於鬆蕾期之後即大幅的下降,對應碳水化合物代謝,瓶插過程中澱粉含量僅有小幅變動,全可溶性糖也於鬆蕾期後持續下降,因此花朵之開放品質,取決於碳水化合物之轉化利用。
玫瑰切花經由100 ppm Agral-LN預措對於貯藏切花鮮重之維持僅於瓶插初期有效用,10 mM proline及10 mM CaCl2處理皆可以提升切花貯藏後之吸水能力並促進花朵的開放。切花經低溫貯藏後常會造成膜體性質的改變、乙烯的生成及離子滲漏率的增加,而利用 CaCl2預措則可顯著的抑制ACO的活性,進而降低乙烯的生成,並且有降低膜體微黏稠度的效果,尤其可延緩8℃貯藏之切花細胞微黏稠度的提升,而接近4℃貯藏者之變化趨勢,並藉由穩定膜體完整性,達到改善貯藏後切花品質之目的。

Cut flower of Rosa hybrida L. cv. ‘Noblesse’ was studied to investigate transient water stress and the crucial aging mechanism after dry cold storage and pursued adequate chemicals to improve the deteriorated damage which dry cold storage resulted from disorder physiological changes of cut roses.
Transient water stress followed by a recovery period, resulted in a decline in the quality of cut flower. After 8 hours without water uptake on the fifth day in the vase, the flower fresh weight and water uptake rate dramaticly declined and cannot fully blossom. It started to wilting on the sixth day. The rehydration after transient water stress resulted in a higher respiration rate. After 8 hours without water uptake, the ethylene reached its peak to 0.75 nl/g/hr. During the wilting stage, after 4 or 8 hours without water supply, the electrolyte leakage showed significantly differences compared to other treatments. During the early rehydration stage, the water potential and petal water content increased. However, while the flower was fully bloomed, decreased repectively, which is especially obvious in the treatment which rehydrated both significantly after transient water stress.
During cold storage, the increase in the storing temperature resulted in a higher respiration rate and the flower opening in bigger width. Under 8℃ storage, the ethylene reached its utmost at 0.69 nl/g/hr and the corresponding ACC content and ACO activity are consistent while under 2℃ storage, there were no ACC accumulation and ethylene production. Nevertheless, once post cold storage, ACC was accumulated and accompanied by ethylene production in large scale together with an earlier peak ethylene production. Under 8℃ storage, the ethylene reached its peak at 1.34 nl/g/hr on the third day in the vase.
The flowers senescence accurred in large amount increase of ethylene production dramatically. After the cut flower suffered the low temperature stress of storage which its membrane would change, especially presented in the treatment that of 8℃ storage. Once the flowers being rewarmed, the microviscosity would reach to 2.24 poise which was similar to the control on fully open stage. The corresponding electrolyte leakage also showed a significant difference in same trend. The cortex and the pith cells of the pedicel tissue after 8℃ storage were deformed as a result from water loss. The transportation of the stem was undermined and caused the petal water content decline.
During cold storage, the activity of α-amylase increased along with the higher storage temperature. The physiological metabolism of the cut flower also became more vigorous, which drove the flower opening even more. The metabolism of carbohydrates also changed along with the temperature, which related to the strength of the respiration rate. After cold storage, the respiration rate was lower and the pattern was different from the pattern of changes no storage flowers. The α-amylase activity of those on 8℃ storage showed a drastic decline after the loosed bud stage. The corresponding carbohydrate metabolism only showed a small change in starch content during vase life. Total soluble sugar also continued to decline at post the loosed bud stage. Therefore, whether the quality of flower bloom was determined by whether the carbohydrates could be effectively transformed and used.
The cut flowers pulsed with 100 ppm Agral-LN, could only maintain its fresh weight at the early stage in vase. Cut rose pulsed with 10 mM proline and 10 mM CaCl2 could enhance the water uptake capability and promote the flower opening after cold storage. The cold stored cut flower existed membrane characteristic changes, increase of ethylene production and electrolyte leakage. Consequently, flowers pulsed with CaCl2 the ACO activity could be inhibited significantly, the ethylene production could be reduced, and the membrane microviscosity could be lowered. As a result the cut flowers under 8℃ storage could delay the increase of microviscosity and its pattern was similar to that under 4℃ storage. In terms of stability of membrane integrity, the accomplishment of quality improvement of flowers which suffered cold stored came true.

壹、前言(Introduction)………………………………………….………...….…1
貳、前人研究 (Literature review)………………………………….….…….....3
一、花朵開放機制及影響花朵開放之重要因子………………..………….3
(一) 花朵開放之生理機制………………………………………………3
(二) 造成花朵無法正常開放之原因……………………………………4
二、水分平衡對切花品質劣變與老化之影響……………………….……..9
(一) 水分逆境引起之切花品質劣變……………………………………9
(二) 影響切花水分平衡之因子………………………………………..11
(三) 水分逆境與切花老化之關係……………………………………..15
三、花瓣細胞老化之關鍵生理變化與機制……………………..………...17
(一) 花瓣老化程序性細胞凋亡之啟動……………………………..…17
(二) 膜體變化與花瓣老化之關係..………………………….……...…18
(三) 乙烯生合成與花瓣老化的關係……………….…………….........22
四、低溫貯藏對切花品質劣變及老化生理之影響…………...…………..24
(一) 低溫貯藏對切花品質之影響…………………..…....………..…25
(二) 低溫貯藏對切花老化生理之影響…..……………..…………....25
五、鈣調節植體老化期間膜體變化與乙烯之生成…………….………..29
(一) 細胞中鈣之生理作用…………………….…………...……..…..30
(二) 鈣與植物衰老的關係…………………..…….………………….31
(三) 鈣調節膜體變化與乙烯生成之作用關係………………............33
參、材料與方法 (Material and methods) ……………………………...…….36
一、 植物材料…………………………………………………...……....…36
二、 貯藏方式……………………………………………………...…...….36
三、瓶插環境及瓶插壽命之評定…………………………………….….36
四、試驗方法…………………………………………………………..…37
(一) 短暫離水處理對玫瑰切花品質劣變及老化生理之影響…….…37
(二) 低溫乾藏對玫瑰切花水分變化、乙烯生合成及膜體性質之影響………………………………………………………………..…39
(三) 低溫乾藏對玫瑰切花品質與碳水化合物代謝之影響…………..41
(四) 化學藥劑預措對玫瑰切花低溫乾藏後品質改善與呼吸作用、老化生理之影響………………………………………...………..……..43
五、統計分析…………………………………………………………..….44
肆、結果 (Results) …………………………………………………………..45
一、短暫離水處理對玫瑰切花品質劣變及老化生理之影響……….…..45
(一) 離水時間對切花品質之影響影響………………………………..45
(二) 離水時間對切花呼吸率及乙烯生成量之影響…………………..45
(三) 離水時間對切花離子滲漏率之影響………………………...…...46
(四) 離水時間對植體內水分變化及花莖維管束組織之影響………..46
二、低溫乾藏對玫瑰切花水分變化、乙烯生合成及膜體性質之影響…55
(一) 貯藏期間水分狀態及乙烯生成之變化……………………….…..55
(二) 玫瑰切花經低溫乾藏後之生理變化……………………………..56
(三) 低溫乾藏對玫瑰花瓣膜體物理結構之影響……………………..58
三、低溫乾藏對玫瑰切花品質與碳水化合物代謝之影響………….…...75
(一) 貯藏期間切花品質與碳水化合物代謝之變化…….…………….75
(二) 玫瑰切花經低溫乾藏後切花品質與碳水化合物代謝之變化…..76
四、化學藥劑預措對玫瑰切花低溫乾藏後品質改善與呼吸作用、老化生理之影響….…………………...………………………………….…..94
(一) 不同濃度藥劑預措對切花吸水性與瓶插壽命之影響…………..94
(二) 化學藥劑預措對切花品質之影響………………………….……..94
(三) 化學藥劑預措對切花呼吸作用及老化生理之影響……………..95
(四) 化學藥劑預措對玫瑰花瓣膜體物理結構之影響………….…….97
伍、討論 (Discussion) ……………………………………………………..119
一、短暫離水處理對玫瑰切花品質劣變及老化生理之影響…….……119
二、低溫乾藏對玫瑰切花水分變化、乙烯生合成及膜體性質之影響.122
三、低溫乾藏對玫瑰切花品質與碳水化合物代謝之影響……………..120
四、化學藥劑預措對玫瑰切花低溫乾藏後品質改善與老化生理之影響…………………………………………………………………….129
陸、中文摘要 (Summary) ………………………………………………….132
柒、英文摘要 (English summary) …………………………………….……134
捌、參考文獻 (Reference) …………………………………………………137
玖、附錄 (Appendix)………………………………………………………..153

參考文獻(Reference)
朱德民。1995。植物與環境逆境。國立編譯館。台北。380pp.。
李哖、吳孟珍。1986。採收成熟度與溫度對`黃秀芳'菊花呼吸作用之影響。中國園藝 32: 233-240。
林雨森。1988。蝴蝶蘭切花採收後生理與老化。國立台灣大學園藝學研究所碩士論文。109pp.。
林瑞松、謝美蓮、賴淑芬。2001。外加乙烯及乙烯抑制劑對玫瑰`Grand Gala'及`Golden Medal'切花生理之影響。中國園藝 47(3): 281-290.
林瑞松。1996。玫瑰切花採收後生理及保鮮。興大農業 19: 1-5。
林瑞松。1999。文心籣切花老化及品質保鮮。農林學報 48(2): 63-83。
林瑜萱。2003。低溫貯藏對玫瑰切花乙烯生成及醣類代謝的影響。國立中興大學園藝學研究所碩士論文。128pp.。
洪法水、超海泉。1999。CaCl2對月季切花衰老的影響。園藝學報 26(1): 62-64。
唐佳惠。2002。成熟度、離水時間和藥劑處理對非洲菊切花採後生理及品質之影響。國立中興大學園藝學研究所碩士論文。130pp.。
黃肇家。1995。蝴蝶蘭切花低溫生理障礙之研究。國立台灣大學園藝學研究所博士論文。170pp.。
盧美君、黃鵬林。1994。花瓣老化之乙烯生成及基因表現。中國園藝 40(4): 235-242。
謝美蓮。1999。乙烯、貯藏溫度及藥劑預措對玫瑰切花生理之影響。國立中興大學園藝學研究所碩士論文。117pp.。
鐘雅慧。2002。溫度、離水時間以及藥劑處理對玫瑰切花品質與生理之影響。國立中興大學園藝學研究所碩士論文。133pp.。
Acock, B. and R. Nichols. 1979. Effects of sucrose on water relation of cut senescing, carnation flowers. Ann. Bot. 44: 221-230.
Adam, Z., A. Borochov, S. Mayak, and A. H. Halevy. 1983. Correlative changes in sucrose uptake, ATPase activity and membrane fluidity in carnation petals during senescence. Physiol. Plant. 58: 257-262.
Adams, D. O. and S. F. Yang. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA. 76: 170-174.
Bassett, C. L. 2001. The molecular biology of plant hormone reception. Hort. Rev. 26: 49-84.
Bieleski, R. L. and M. S. Reid. 1992. Physiological changes accompanying senescence in the ephemeral daylily flower. Plant Physiol. 98: 1042-1049.
Borochov, A. and A. H. Halevy. 1978. Microviscosity of plasmalemmas in rose petals as affected by age and environmental factors. Plant physiol. 61: 812-815.
Borochov, A. and W. R. Woodson. 1989. Physiology and biochemistry of flower petal senescence. Hort. Rev. 11: 15-43.
Borochov, A., A. H. Halevy, and M. Shinitzky. 1982a. Senescence and the fluidity of rose petal membrane. Plant Physiol. 69: 296-299.
Borochov, A., H. Itzhaki, and H. Spiegelstein. 1985. Effect of temperature on ethylene biosynthesis in carnation petals. Plant Growth Regul. 3: 159-166.
Borochov, A., H. Spiegelstein, and S. P. Handas. 1997. Ethylene and flower petal senescence:Interrelationship with membrane lipid catabolism. Physiol. Plant. 100: 606-612.
Borochov, A., H. Spiegelstin, and R. Porat. 1995. Membrane lipid metabolism of petunia petal during senescence. Acta Hort. 405: 240-245.
Borochov, A., M. H. Cho, and W. F. Boss. 1994. Plasma membrane lipid metabolism of petunia petals during senescence. Physiol. Plant. 90: 279-284.
Borochov, A., S. Mayak, and R. Broun. 1982b. The involvement of water stress and ethylene in senescence of cut carnation flowers. J. Exp. Bot. 33: 1202-1209.
Borochov, A., S. Torre, and A. H. Halevy. 1999. Calcium regulation of senescence in rose petals. Physiol. Plant. 107: 214-249.
Borochov, A., T. Tirosh, and S. Mayak. 1986. The fate of membrane proteins during flower senescence. Acta Hort. 181: 75-80.
Borochov, A., T. Tirosh, and A. H. Halevy. 1976. Abscisic acid content of senescing petals on cut rose flowers as affected by sucrose and water stress. Plant physiol. 58: 175-178.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protent dye binding. Anal. Biochem. 72: 248-254.
Brooks, D. E. and Norris-Jones, R. 1994. Preparation and analysis of two phase systems. Methods Enzymol. 228: 14-27.
Burdett, A. N. 1970. The cause of bent neck in cut roses. J. Amer. Soc. Hort. Sci. 95: 427-431.
Bush, D. S. 1993. Regulation of cytosolic calcium in plants. Plant Physiol. 103: 7-13.
Buys, C. A. and H. G. Cours. 1980. Water uptake as a criterion for the vase life of cut flowers. Acta Hort. 113: 127-135.
Celikel, F. and W. G. van Doorn. 1995. Effects water stress and gibberellin on opening in Iris× hollandica. Acta. Hort. 405: 246-252.
Cheour, F., J. Makhlouf, and C. Willemot. 1992. Delay of membrane lipid degradation by calcium treatment during cabbage leaf senescence. Plant Physiol. 100: 1656-1660.
Cheverry, J. L., J. Pouliquen, H. L. Guyader, and P. Mareellin. 1988. Calcium regulation of exogenous and endogenous I-aminocyclopropane-1- carboxyilc acid bioconversion to ethylene. Physiol. Plant. 74: 53-57.
Chin, C.-k and J. N. Sacalis. 1977. Metabolism of sucrose in cut roses. Ⅱ. Movement and inversion of sucrose absorbed by cut rose stems. J. Amer. Soc. Hort. Sci. 102: 537-540.
Coker, T., S. Mayak, and J. E. Thompson. 1985. Effect of water stress on ethylene production and on membrane microviscosity in carnation flowers. Sci. Hortic. 27: 317-324.
Conrado, L. L., R. Shanahan, and W. Eisinger. 1980. Effects of pH, osmolarity, and oxygen on solution uptake by cut rose flowers. J. Amer. Soc. Hort. Sci. 105: 680-683.
Dai, J. and R. E. Paull. 1991. Effect of water status on Dendrobium flower spray postharvest life. J. Amer. Soc. Hort. Sci. 116: 491-496.
De Stigter. and H. C. M. 1981. Ethephon effects in cut`sonia'roses after pretreatment with silver thiosulfate. Acta Hort. 113: 27-31.
De Witte, Y. and W. G. van Doorn. 1991. The mode of action of bacteria in the vascular occlusion of cut rose flowers. Acta Hort. 298: 155-170.
Deschene, A., G. Paliyath, E. C. Lougheed, E. B. Dumbroff, and J. E. Thompson. 1991. Membrane deterioration during postharvest senescence of broccoli florets: modulation by temperature and controlled atmosphere storage. Post. Biol. Tech. 1: 19-31.
Drory, A., A. Borochov, and S. Mayak. 1992. Transient water stress and phospholipid turnover in carnation flowers. J. plant physiol. 140: 116-120.
Drory, A., S. Beja-Tal, A. Borochov, and E. Gindin, S. Mayak. 1995. Transient water stress in carnation flower: effects of cycloheximide. Sci. Hortic. 64: 167-175.
Dubois, M. 1956. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28: 350-356.
Evans, R. Y. and M. S. Reid. 1986. Control of petal expansion during opening of roses. Acta Hort. 181: 55-63.
Evans, R. Y. and M. S. Reid. 1988. Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. J. Amer. Soc. Hort. Sci. 133: 884-888.
Faragher, J. D. and S. Mayak. 1984. Physiological response of cut rose flowers to exposure to low temperature: changes in membrane permeability and ethylene production. J. Exp. Bot. 35: 965-974.
Faragher, J. D., A. Borochov, V. Keren-Paz, Z. Adam, and A. H. Halevy. 1984b. Changes in parameters of cell senescence in carnation flowers after cold storage. Sci. Hortic. 22: 295-302.
Faragher, J. D., E. Wachtel, and S. Mayak. 1987a. Changes in the physical state of membrane lipids during senescence of rose petals. Plant Physiol. 83: 1037-1042.
Faragher, J. D., S. Mayak, and E. J. Wachtel. 1986a. Change in physical properties of cell membrane and their role in senescence of rose flower petals. Acta Hort. 181: 371-375.
Faragher, J. D., S. Mayak, and T. Tirosh. 1986b. Physiological response of cut rose flowers to cold storage. Physiol. Plant. 67: 205-210.
Faragher, J. D., S. Mayak, T. Tirosh, and A. H. Haylevy. 1984a. Cold storage of rose flower: effects of cold storage and water loss on opening and vase life of ‘Mercedes’ roses. Sci. Hortic. 24: 369-378.
Faragher, J. D., Y. Mor, and F. Johnson. 1987b. Role of aminocyclopropane-1- carbxylic acid (ACC) in control of ethylene production in fresh and cold-stored rose flowers. J. Exp. Bot. 38(196): 1839-1847.
Ferguson I. B. 1984. Calcium in plant senescence and fruit ripening. Plant cell Environ. 7: 477-489.
Ferguson, I. B. and B. k. Drobak. 1988. Calcium and the regulation of plant growth and senescence. HortScience 23: 262-266.
Gardner, H. W. 1995. Biological roles and biochemistry of the lipoxygenase pathway. HortScience 30: 197-204.
Gerasopoulos, D., V. Chouliaras, and S. Lionakis. 1996. Effects of preharvest calcium chloride sprays on maturity and storability of Hayward kiwifruit. Post. Biol. Tech. 7: 65-72.
Goszczynska, D. and M. S. Reid. 1985. Studies on the development of tight cut rose buds. Acta Hort. 167: 101-108.
Goszczynska, D. and R. M. Rudnicki. 1982. Long-term storage of cut carnation at green-bud stage. Sci. Hortic. 17: 289-297.
Goszczynska, D. M. and R. M. Rudnicki. 1988. Storage of cut flower. Hort. Rev. 10: 35-62.
Goszczynska, D., H. Itzhaki, A. Borochov, and A. H. Halevy. 1990. Effects of sugar on physical and compositional properties of rose petal membrane. Sci. Hortic. 43: 313-320.
Halevy, A. H. 1976. Treatments to improve water balance of cut flowers. Acta Hort. 64: 223-230.
Halevy, A. H. 1986. Flower sencescence. In:Y. Y. Leshem, A. H. Halevy, and C.Frenkel, eds. Process and Control of Plant Senescence. Elsevier Science Pub. pp.142-161.
Halevy, A. H. and S. Mayak. 1975. Interelationships of several phytohormones in the regulation of rose petal senescence. Acta Hort. 41: 103-116.
Halevy, A. H. and S. Mayak. 1979. Senescence and postharvest physiology of cut flowers, Part 1. Hort. Rev. 1: 204-236.
Halevy, A. H. and S. Mayak. 1981. Senescence and postharvest physiology of cut flowers, Part 2. Hort. Rev. 3: 59-143.
Halevy, A. H., R. Porat, H. Spiegelstein, A. Borochov, and C. S. Whitehead. 1996. Short-chain saturated fatty acids in the regulation of pollination-induced ethylene sensitivity of Phalaenopsis flowers. Physiol. Plant. 97: 469-474.
Hammond, B. W. 1982. Changes in amylase activity during rose bud opening. HortScience 16: 283-289.
Havel, L. and D. J. Durzan. 1996. Apoptosis in plants. Bot. Acta 109: 268-277.
Ho, L. C. and R. Nichols. 1977. Translocation of 14C-sucrose in relation to changes in carbohydrate content in rose corollas cut at different storages of development. Ann. Bot. 41: 227-242.
Hu, Y., M. Doi, and H. Imanishi. 1998a. Competitive water relations between leaves and flower bud during transport of cut rose. J. Japan. Soc. Hort. Sci. 67: 532-536.
Hu, Y., M. Doi, and H. Imanishi. 1998b. Improving the longevity of cut roses by cool and wet transport. J. Japan. Soc. Hort. Sci. 67: 681-684.
Huang, F. S. Philosoph-Hadas, S. Meir, S. A. Callaham, R. Sabato. A. Zelcer, and P. K. Hepler. 1999. Increases incytosolic Ca2+ in parsley mesophyll cells correlate with leaf senescence. Plant Physiol. 115: 51-60.
Ichimura, K., K. Kohata, and R. Goto. 1999a. Effect of temperature, 8-hydroxyquinoline sulphate and sucrose on the vase life of cut rose flowers. Post. Biol. Tech. 15: 33-40.
Ichimura, K., M. Shimamura, and T. Hisamatsu. 1998. Role of ethylene in senescence of cut Eustoma flowers. Post. Biol. Tech. 14: 193-198.
Ichimura, K., S. Ueyama, and R. Goto. 1999b. Possible roles of souble carbohydrate constituents in cut rose flowers. J. Japan. Soc. Hort. Sci. 68: 534-539.
Ichimura, K., Y. Mukasa, T. Fujiwara, K. Kohata, R. Doto, and K. Suto. 1999c. Possible roles of methyl glucoside and myo-inositol in the opening of cut rose. Ann. Bot. 83: 551-557.
Itzhaki, H., A. Borochov, and S. Mayak. 1990. Age-related changes in petal membrane from attached and detached rose flower. Plant Physiol. 94: 1233-1236.
Iwahashi, H. and H. Hyodo. 1995. Ethylene production by Japanese morning glory(Pharbitis nil) flower and the effect of endogenous ethylene on flower senescence. Acta Hort. 394: 281-288.
Jones, R. and R. Mcconchie. 1995. Characteristics of petal senescence in a non-climacterics cut flower. Acta Hort. 405: 216-223.
Jones, R., B. M. Serek, L. K. Chen, and M. S. Reid. 1994. The effect of protein synthesis inhibition on petal senescence in cut bulb flowers. J. Amer. Soc. Hort. Sci. 119: 1243-1247.
Joyce, D. C., A. J. Shorter, and P. D. Hocking. 2001. Mango fruit calcium levels and the effect of postharvest calcium infiltration at different maturities. Sci. Hortic. 91: 81-99.
Joyce, D. C., S. A. Meara, S. E. Hetherington, and P. Jones. 2000. Effects of cold storage on cut Gervilled ‘Sylvia’ inflorescences. Post. Biol. Tech. 18: 49-56.
Kacperska, A. and M. K. Zebalska. 1985. Is lipoxygenase involved in the formation of ethylene from ACC. Physiol. Plant. 64: 333-338.
Kaltaler, R. E. L. and P. L. Steponkus. 1974. Uptake and metabolism of sucrose in cut roses. J. Amer. Soc. Hort. Sci. 99: 490-493.
Kohl, H. C. and D. L. Rundle. 1972. Decreasing water loss of cut roses with abscisic acid. HortScience 7: 249-259..
Koning, R. E. 1984. The roles of plant hormones in the growth of the corolla of Gaillardia grandiflora (Asteraceae) ray flowers. Amer. J. Bot. 71: 1-8.
Kuiper, D. S., A. van Reenen, and S. A. Ribot. 1991. Effect of gibberellic acid on sugar transport into petals of `Medelon'rose flowers during bud opening. Acta Hort. 298: 93-98.
Kuiper, D., H. S. Van Reenen, and S. A. Ribot. 1996. Characterisation of flower bud opening in rose;a comparison of Madelon and Sonia roses. Post. Biol. Tech. 9: 75-86.
Kuiper, D., S. Ribot., H. S. Van Reenen, and N. Marissen. 1995. The effect of sucrose on the flower bud opening of Madelon cut roses. Sci. Hortic. 60: 325-336.
Kusuhara, Y., S. Kawabata, and R. Sakiyama. 1996. Effect of light intensity and sucrose concentration on the petal color and the expression of anthocyanin biosynthetic genes in detached flowers of Eustoma grandiflorum. J. Japan. Soc. Hort. Sci. 65: 550-555.
Leonard, R. T. and P. K. Hepler. 1990. Calcium in plant growth and development. 13th Annual Riverside Symposium in Plant Physiology. Rockiville, Maryland, USA. 250pp.
Leshem, Y. Y. 1987. Membrane phosphlipid catabolism and Ca2+ activity in control of senescence. Physiol. Plant. 69: 551-559.
Leshem, Y. Y., A. H. Halevy, and C. Frenke. 1986. Processes and control of plant senescence. Elsevier. Amsterdam. 215pp.
Leshem, Y. Y., S. Sridhara, and J. E. Thompson.1984. Involvement of calcium and calmodulin in membrane deterioration during senescence of pea foliage. Plant Physiol. 75: 329-335.
Lineberger, R. D. and P. L. Steponkus. 1976. Identification and localization of vascular occlusions in cut roses. J. Amer. Soc. Hort. Sci. 101: 246-250.
Lizada, M. C. and S. F. Yang. 1979. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal. Biochem. 100: 140-145.
Lyons, J. M. 1973. Chilling injury in plant. Ann. Rev. Plant Physiol. 24: 445-466.
Mao, W. W. and J. E. Kinsella. 1981. Amylase activity in banana fruit: properties and changes in activity with ripening. J. Food Sci. 46: 1400-1403.
Marangoni, A. G., T. Palma, and D.W. Stanley. 1996. Membrane effects in postharvest physiology. Post. Biol. Tech. 7: 193-217.
Matile, P. 1997. The vacuole and cell senescence. In:R. L. Leigh, and D. Sanders(eds.), Advances in Botanical Research. Academic Press, Inc. pp.87-112.
Matile, P. and F. Winkenbach. 1971. Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory. J. Exp. Bot. 22: 759-771.
Mayak, S. 1987. Senescence of flowers. HortScience. 22: 863-865.
Mayak, S. and J. D. Faragher. 1986. Storage environment related stresses and flowers senescence. Acta Hort. 181: 33-43.
Mayak, S., A. Borochov, and T. Tirosh. 1985. Transient water stress in carnation flower: effect of amino-oxyacetic acid. J. Exp. Bot. 36: 800-806.
Mayak, S., L. Raymond, and J. E. Thompson. 1983. Superoxide radical production by microsomal membrane from senescine carnation flowers: an effect on membrane fluidity. Phytochemistry 22: 1375-1830.
Mayak, S., Y. Vaadia, and D. R. Dilley. 1977. Regulation of senescence in carnation (Dianthus caryophyllus L.) by ethylene. J. Amer. Soc. Hort. Sci. 101: 583-585.
Mckeon, T. A. 1982. The effect of plant-hormone pretretments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in water-stressed whest leaves. Planta 155: 437-443.
Mcmurray, W. C. and R. F. Irvine. 1988. Phosphatidylinositol 4,5-bisphosphate phosphodiesterase in higher plants. Physiol. Plant. 249: 877-881.
Nowak, J. and K. Mynett. 1985. The effect of sucrose, silver thiosulphate and 8-hydroxyquinoline citrate on the quality of lilium inflorescences cut at bud stage and stored at low temperature. Sci. Hortic. 25: 299-302.
Nowak, J. and R. M. Rudnick. 1990. Postharvest handling and storage of cut flowers. Flonst Greens and Potted Plants. Timber Press Ine, Singapore. 210pp.
Paliyath, G. and J. E. Thompson. 1988. Senescence-related changes in ATP-dependent uptake of calcium into microsomal vesicles from carnation petals. Plant Physiol. 88: 295-302.
Paliyath, G. and J. E. Thompson. 1990. Evidence for early changes in membrane structure during post-harvest development of cut carnation (Dianthus caryophyllus L.)flower. New Phytol. 114: 555-562.
Parups, E.V. and J. M. Molnor. 1972. Histochemical study of xylem blockage in cut roses. J. Amer. Soc. Hort. Sci. 97: 532-534.
Pauls, K. P. and J. E. Thompson. 1980. In vitro simulation of senescence related membrane damage by ozone induced lipid peroxidation. Nature 283: 504-506.
Poovaiah, B. W. 1988. Molecular and cellular aspects of calcium action in plants. HortScience 23: 267-271.
Poovaiah, B. W. 1993. Biochemical and molecular aspects of calcium action. Acta Hort. 326: 139-147.
Poovaiah, B. W., G. M. Glenn, and A. S. N. Reddy. 1988. Calcium and fruit softening : physiology and bischemistry. Hort. Rev. 10: 107-153.
Porat, R., M. Serek, A. H. Halevy, and A. Borochov. 1995a. An increase in ethylene sensitivity following pollination is the initial event triggering an increase in ethylene production and enhanced senescence of Phalaenopsis orchid flowers. Physiol. Plant. 93: 778-784.
Porat, R., N. Resiss, R. Atzorn, A. H. Halevy, and A. Borochov. 1995b. Examination of the possible involvement of lipoxygenase and jasmonates in pollination-induced senescence of Phalaenopsis and Dendrobium orchid flowers. Physiol. Plant. 94: 205-210.
Porat, R., Y. Reuveny, and A. H. Halevy. 1993. Petunia flower longevity: the role of sensitivity to ethylene. Physiol. Plant. 89: 291-294.
Pritchard, M. K., C. S. Hew, and H. Wang. 1991. Low-temperature storage effects on suger content, respiration and quality of anthurium flowers. J. Hort. Sci. 66: 209-214.
Raab, M. M. and R. E. Koning. 1988. How is floral expansion requlated? BioScience 38: 670-674.
Reid, M. S. 1989. The role of ethylene in flower senescence. Acta Hort. 261: 157-169.
Reid, M. S. and R. Y. Evans. 1986. Control of cut flower opening. Acta Hort.181: 45-54.
Reid, M. S., R. Y. Evans, L. L. Dodge, and Y. Mor. 1989. Ethylene and silver thiosulphate influence opening of cut rose flower. J. Amer. Soc. Hort. Sci. 114: 436-440.
Rudolph, A. S., J. H. Crowe, and L. M. Crowe. 1986. Effects of three stabilizing agent-proline, betaine and trehalose-on membrane phospholipids. Arch. Biochem. Biophys. 245: 134-143.
Sankat, C. K. and S. Mujaffar. 1994. Water balance in cut anthurium flowers in storage and its effect on quality. Acta Hort. 368: 723-732.
Serrano, M., G. Martinez, M. T. Pretel, F. Riquelme, and F. Romojaro. 1992. Cold storage of rose flowers (Rosa hybrida, M. cultivar ‘Visa’): physiological alterations. Sci. Hortic. 51: 129-137.
Shinitzky, M. and Y. Barenholz. 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515: 367-394.
Siegelman, H. W., C. T. Chow, and J. B. Biale. 1958. Respiration of developing rose petals. Plant Physiol. 33: 403-409.
Song, C. P., H. S. Mei, and Y. L. Cheng. 1992. Effects of calcium on the generation of superoxide free radical and the conversion of ACC to ethylene by wheat chloroplasts. Acta physiologica sinica 18: 55-62.
Stead, A. D. and K. G. Moore. 1983. Studies on flower longevity in Digitalis: the role of ethylene in corolla abscission. Planta 157: 15-21.
Sylvestre, I. and A. Paulin. 1987. Accelerated ethylene production as related to changes in lipids and electrolyte leakage during senescence of petals of cut carnations. Physiol. Plant. 70: 530-536.
Taiz, L. and E. Zeiger. 1992. Water balance of the plant. In: Taiz, L. and E. Zeiger(eds), Plant Physiology. Benjamin Cummings Publishing Company Inc. pp.81-99.
Thimann, K. V. 1978. The senescence of leaves. In: Thimann K. V. (ed), Senescence in Plant. CRC Press, Boca Raton, Florida. pp.85-115.
Thompson, J. E., S. Mayak, M. Shinitzky, and A. H. Halevy. 1982. Acceleration of membrane senescence in cut carnation flowers by treatment with ethylene. Plant Physiol. 69: 859-863.
Tonecki, J., A. J. Lukaszewska, and N. Gorin. 1989. Effect of L-proline, 1-hydroxyproline and gamma-amino butyric acid on vase life of cut`Sonia'roses. Gartenbauwisseneschaft 54: 82-85.
Van Doorn, W. G. 1989a. Role of physiological processes, microorganisms and air embolism in vascular blockage of cut rose flower. Acta Hort. 261: 221-225.
Van Doorn, W. G. 1989b. Aspiration of air at the cut surface of roses stems and its effect on the uptake of water. J. Plant. Physiol. 137: 160-164.
Van Doorn, W. G. 1990. Aspiration of air at the cut surface of roses stems and its effect on the uptake of water. J. Plant. Physiol. 137: 160-164.
Van Doorn, W. G. 1995.Vascular occlusion in cut rose flower: a survey. Acta Hort. 405: 58-66.
Van Doorn, W. G. 1997. Water relation of cut flower. Hort. Rev. 18: 1-85.
Van Doorn, W. G. and E. Otma. 1995b. Vascular occlusion in cut flowering rose stems exposed to air: role of water entry into the lumina of the xylem conducts opened by cutting. J. Plant. Physiol. 145: 78-82.
Van Doorn, W. G. and M. S. Reid. 1995a. Vascular occlusion in stems of cut rose.flowers exposed to air: roles of xylem anatomy and rates of transptration. Physiol. Plant. 93: 624-629.
Van Doorn, W. G. and R. B. Jones. 1994. Ultrasonic acoustic emissions from excised stems of two Thryptomens species. Physiol. Plant. 92: 431-436.
Van Doorn, W. G. and R. R. J. Perik. 1990. Hydroxyquinoline citrate and low pH prevent vascular blockage in stems of cut rose flowers by reducing the number of bacteria. J. Amer. Soc. Hort. Sci. 115: 979-981.
Van Doorn, W. G. and V. Suiro. 1996. Relationship between cavitation and water uptake in rose stems. Physiol. Plant. 96: 305-311.
Van Doorn, W. G. and Y. de Witte. 1997. Sources of the bacteria involved in vascular occlusion of cut rose flower. J. Amer. Soc. Hort. Sci. 122: 263-266.
Van Doorn, W. G., H. C. M. de Stigter, Y. de Witte, and A. Boekestein. 1991a. Micro-organisms at the cut surface and in xylem vessels of rose stem: A scanning electron microscopy study. J. Applied Bacteriol. 70: 34-39.
Van Doorn, W. G., H. Harmannus, and E. Otma. 1991b. Is vascular blockage in stems of cut lilac flowers mediated by ethylene? Acta Hort. 298: 177-181.
Van Doorn, W. G., H. Harmannus, and J. S. Song. 1995. Water relation and senescence of cut Iris flowers: effects of cycloheximide. Post. Biol. Tech. 5: 345-351.
Van Doorn, W. G., P. Abadie, and J. M. B. Peter. 2002. Alkylethoxylate surfactants for rehydration of roses and Bouvardia flowers. Post. Biol. Tech. 24: 327-333.
Van Doorn, W. G., P. Caroline, and J. J. Charles. 1993a. Effects of surfactants on the vascular occlusion induced by exposure to air in cut flowering stems of Astibe, Bouvardia, and rose. J. Plant Physiol.141: 251-253.
Van Doorn, W. G., R. J. Perik Rene, and J. M. B. Peter. 1993b. Effects of surfactants on the longevity of dry-stored cut flowers stems of rose, Bouvardia, and Astilbe. Post. Biol. Tech. 3: 69-76.
Volpin, H. and Y. Elad. 1991. Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Physiol. Bioch. 81: 1390-1394.
Wagstaff, C., P. Malcolm, A. Rafiq, M. Levreentz, G. Griffiths, and H. Rogers. 2003. Programmed cell death(PCD)processes begin extremely early in Alstroemeria petal senescence. New Phytol. 160: 49-59.
Waithaka, K., M. S. Reid, and L. Dodge. 2001. Cold storage and flowers deeping quality of cut tuberose (Polianthes tuberosa L.). J. Hort. Sci. Bio. 76: 271-275.
Wang, C. Y. 1982. Physiological and biochemical response of plants to chilling stress. HortScience 17: 173-177.
Wang, C. Y. 1990. Chilling Injury of Horticultural Crops. CRC Press, Inc. Florida. 313pp.
Wang, C. Y. and D. O. Adams. 1980. Ethylene production by chilled cucumbers(Cucumis sativus L.). Plant Physiol. 66: 841-843.
Weinstein, L. H. 1957. Senescence of roses chemical changes associated with senescence of cut `Better Times'roses. Contrib Boyce Thompson Inst. 19: 33-48.
Whitehead, C. S. and D. Vasiljevic. 1993. Role of short-chain saturated fatty acids in the control of ethylene sensitivity in senescing carnation flowers. Physiol. Plant. 88: 243-250.
Woltering, E. J. and W. G. Van Doorn. 1988. Role of ethylene in senescence of petals morphological and taxonomical relationships. J. Exp. Bot. 39: 1605-1616.
Woodson, W. R. and H. Wang. 1987. Invertases of carnation petals. Partial purification, characterization and changes in activity during petal growth. Physiol. Plant. 71: 224-228.
Wulster, G., J. Sacalis, and H. Janes. 1982. The effect of inhibitors of proteinsynthesis on ethylene-induced senescence in isolated carnation petals. J. Amer. Soc. Hort. Sci. 107: 112-115.
Yamada, S., Y. Takatsu, T. Manabe, M. Kasumi, and W. Marubashi. 2003. Suppressive effect of trehalose on apoptotic cell death leading to petal senescence in ethylene-insensitive flowers of gladiolus. Plant Sci. 164: 213-221.
Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189.
Zieslin. N., H. C. Kohl, A. M. Kofranek, and A. H. Halevy. 1978. Changes in the water status of cut roses and its relationship to bent-neck phenomenon. J. Amer. Soc. Hort. Sci. 103: 176-179.
Zimmerman, P. W., A. E. Hitchcock, and W. Crocker. 1931. The effect of ethylene and illuminating gas on rose. Contrib Boyce Thompson Inst. 3: 459-481.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔