(3.230.173.249) 您好!臺灣時間:2021/04/18 08:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:阮雅蘭
研究生(外文):Ya-Lan Ruan
論文名稱:柿果貯藏及脫澀技術之改進及脫澀機制之研究
論文名稱(外文):Improvement of Storage and Deastringency Technology and Studies on the Deastringency Mechanism of Persimmon (Diospyros kaki L.) Fruits
指導教授:謝慶昌謝慶昌引用關係
指導教授(外文):Ching-Chang Shiesh
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:127
中文關鍵詞:柿子脫澀技術苯丙胺酸解氨酶貯藏技術脫澀機制
外文關鍵詞:persimmondeastringency technologyphenylalanine ammonia-lyaseStorage technologyDeastringency Mechanism
相關次數:
  • 被引用被引用:8
  • 點閱點閱:602
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
柿子葉可溶性單寧濃度因品種而異,本調查中以‘牛心柿’最高,其次為‘花御所’,再者‘富有’、‘蜂屋’及‘平核無’,三者間差異不大;葉片中PAL活性和可溶性單寧濃度變化趨勢一致。柿葉經二氧化碳處理後可溶性單寧呈下降趨勢,和果實一樣有脫澀情形,似可作為研究脫澀之材料。柿果發育中生長曲線呈雙S型曲線,幼果期‘牛心柿’即有較高的可溶性單寧濃度,且成長中單果含量有累積現象,而‘富有’柿可溶性單寧含量及濃度皆低,且其PAL活性亦較‘牛心柿’低,由結果顯示,‘富有’柿合成單寧能低,加上果實成長之稀釋效應,至採收時已不具澀味。
‘牛心柿’以各種脫澀方法處理時,其脫澀速度由快而慢依序為二化碳脫澀法、酒精脫澀法、石灰懸浮液脫澀法及益收脫澀法。100%氮氣處理時柿果果肉亦可和二氧化碳處理一樣累積酒精和乙醛,但脫澀效果不及二氧化碳處理者,而酒精處理時,以電泳分析酒精去氫酵素(ADH)之表現,在處理後60小時才見ADH條帶出現,但柿果於12小時後即開始脫澀,結果顯示,乙醛可能非促成脫澀之主要因子。在果肉圓片系統下,二氧化碳處理時,Cycloheximide及Tween-60不會抑制脫澀,Aminooxyacetic acid,Sodium cyanide及熱處理會抑制脫澀;另外,完整果實在脫澀時皆可見果實硬度下降,由此結果推測,柿果脫澀處理時,有一非附膜且需pyridoxal phasphate酵素被活化,而催化細胞壁水解產生滲透性脫水,促使脫澀。
‘牛心柿’在6℃低溫貯藏時,果皮由黃綠色轉橙黃色,果肉較暗呈水浸狀,硬度下降及不易脫澀等寒害症狀。本試驗主要探討‘牛心柿’果實於低溫貯藏前,利用溫湯處理,對果實品質之影響。‘牛心柿’先以溫湯處理,再低溫貯藏(6℃) 30天後,各處理以酒精脫澀處理3天,有脫澀不完全的情形;貯藏60天後澀味指數經3天酒精脫澀處理,澀味指數可降至1,可能和果肉軟化有所關聯,且有寒害症狀產生;其中以48℃熱水處理30分鐘及50分鐘可維持較高的果肉硬度及品質。
本試驗將‘筆柿’以不同脫澀方法處理,以了解‘筆柿’脫澀所需之最適條件及觀察物理性狀和化學組成分之變化。‘筆柿’以10ppm乙烯催熟,在20-30℃下後熟,3日可完全脫澀,果實顏色由黃橙變紅呈現橙紅色;酒精脫澀處理,在30℃下,每公斤柿果需6ml之酒精量,於3日後可完全脫澀。果實以酒精及二氧化碳處理,脫澀之速度隨溫度增加而加速,25℃下需5日以上,30及35℃需4-5日,而在40℃下則只需2-3日即可完成脫澀,但以30及35℃脫澀後之品質較佳。

The concentrations of the soluble tannin in persimmon leaves differed markedly in different varieties. ‘Bull Heart’ and ‘Hanagoshiyo’ leaves had particularly high concentrations of soluble tannin while no significant differences were found among ‘Fuyu’, ‘Hachiya’ and ‘Hiratanenashi’. Similar trends were observed for PAL activity as in the case of soluble tannin. Like fruit deastringency, the concentration of soluble tannin in leaves decreased after carbon dioxide treatment. Thus the leaves could be used as material to investigate the mechanism of deastringency. The curve of fruit development in ‘Fuyu’ and ‘Bull Heart’ persimmon tended to be a double sigmoid. At the young fruit stage, the PAL activity and tannin content of ‘Bull Heart’ fruits were higher than those of ‘Fuyu’ fruits and had the tendency of accumulation during growth and development. Meanwhile, soluble tannin content of the ‘Fuyu’ fruit was low and the PAL activity was also lower than the ‘Bull Heart’. The results indicated that tannin synthesis ability of ‘Fuyu’ and the dilution effects of fruit growth were responsible for the low astringency of fruits at harvest.
In vivo and whole fruit studies were conducted on the effectiveness of deastringency of persimmon “Bull Heart” fruit. Carbon dioxide treatment was found to have higher deastringency rate than alcohol, CaO suspension and ethrel. Further studies showed that fruits treated with 100% nitrogen, as in the case of carbon dioxide, accumulated acetaldehyde and ethanol in fruits but the rate of deastringency was low and the method was less effective. While removal astringency with alcohol, electrophoresis bands of alcohol dehydrogenase (ADH) appeared at 60 hours during deastringency period, but the deastringency reactions of the fruit were observed 12 hours after the treatment, which indicates that acetaldehyde is not a key factor in the process.
Fruit discs were also used in the deastringency experiments of ‘Bull Heart’. Soaking discs in various solutions and then treating with carbon dioxide and revealed that deastringency was inhibited by aminooxyacetic acid, sodium cyanide and hot water treatments (70-100℃for 10 min) but not by cycloheximide and Tween-60. This indicates that deastringency of persimmon requires the activation of a non-peripheral and pyridoxal-phosphate dependent enzyme, which catalyzes cell wall hydrolysis and leads to the osmosis dehydration which is followed by triggering the polymerization of tannin to complete the process.
Persimmon fruits ‘Bull Heart’ when stored at 6℃, the peel color turned from yellow-green to orange-yellow, and the color of pulp became dark and water soaked. Firmness decreased and astringency could not be eliminated. Those symptoms were confirmed to be chilling injuries. The objectives of this study were to evaluate the effects of warm-water treatment before cold storage (6℃) on the qualities of the fruits. ‘Bull Heart’ treated with warm water and stored in cold storage for 30 days, followed by 3-day alcohol treatment resulted in an incomplete deastringency; The astringent index was down to 1 after 60 days of cold storage and 3 days of alcohol treatment. This could relate to the softening of the fruits and chilling injury. Warm-water treatments (48℃-30min and 48℃-50min) reduced the damage of chilling injury and retained the firmness and quality of fruits.
The effects of different deastringent treatments on physical character and chemical compositions changes of the ‘Bi-Su’ persimmon were evaluated in this experiment. The astringency of persimmon fruits was completely removed by 10 ppm ethylene together with after-ripening for 3 days at 20-30℃. The peel color turned from yellow-green to red after the completion of deastringency. Ethanol treatment at the dosage of 6ml/kg completely eliminated the astringency after 3 days at 30℃. The effects of temperature on ‘Bi-Su’ persimmon fruits treated with carbon dioxide and ethanol were examined during the process of deastringency at various temperature ranging from 20-40℃. The time required to reach astringent index 1 were 2-3, 4-5 and more than 5 days at 40℃, 30-35℃and 20-25℃, respectively. The deastringency temperatures required for the better fruits qualities were 30-35℃.

目錄
壹、 前人研究 1
一、 柿之概說 1
二、 果實之生長發育 2
三、 苯丙胺酸解氨酶在果實生長發育及採後之變化 3
四、 柿果的脫澀方法 5
五、 柿果脫澀機制 7
六、 低溫貯藏前熱處理對果實寒害之影響 10
七、 乙烯與果實後熟軟化 12
貳、 柿子葉片之脫澀處理及柿果生長發育期間苯丙胺酸解氨酶與可溶性單寧含量之變化 15
摘要 15
SUMMARY 16
一、 前言 17
二、 材料與方法 18
三、 結果與討論 20
參、 ‘牛心柿’不同脫澀處理脫澀之機制 29
摘要 29
SUMMARY 30
一、 前言 31
二、 材料與方法 32
三、 結果 37
四、 討論 53
肆、 低溫貯藏前溫湯處理對‘牛心柿’脫澀品質之影響 59
摘要 59
SUMMARY 60
一、 前言 61
二、 材料與方法 62
三、 結果 63
四、 討論 76
伍、 ‘筆柿’脫澀處理條件之研究 79
摘要 79
SUMMARY 80
一、 前言 81
二、 材料與方法 82
三、 結果 84
四、 討論 112
參考文獻 117

參考文獻
呂明雄。1986。改進柿子脫澀處理。豐年 36:26-28。
林宗賢、謝慶昌、繆八龍。1987。二氧化碳與石灰懸浮液對柿果脫澀、軟化與乙烯產生之比較。中國園藝 33:274-283。
林芳存、林宗賢。1995。麻豆文旦柚果實發育之研究。台灣柑橘之研究與發展研討會專刊 pp.77-99。台灣省農業試驗所 編印 。
林棟樑。2002。蔬果冷藏之寒害與管理。台南區農業專訊 40:16-20。
林榮貴。1996。柿品種的演化與分類。農業世界 159:47-51。
林慧玲。1997。番石榴果實後熟生理之研究。國立台灣大學園藝研究所博士論文 255p。
柯立群、韓青梅。1997。金煌芒果果實生長與發育之研究。中國園藝 43:1-15。
茅林春、王陽光、張上隆。2000。熱處理延緩桃果實的採後冷害。浙江大學學報(農學與生命科學版) 26:137-140。
孫慧慈、楊耀祥。1996。‘蜜紅’葡萄果實生長之研究。興大園藝 21:13-28。
高景輝。1994。植物賀爾蒙生理。pp.114-150。華香園。台北。
張林仁、林嘉興。1988。葡萄果實之發育與成熟。葡萄生產技術pp.151-162。台中區農業改良場 編印。
郭銀港、謝慶昌、李堂察、呂明雄。1995。柑橘果實發育之研究。台灣柑橘之研究與發展研討會專刊。pp.111-117。台灣省農業試驗所編印。
陳運造。1996。一樹七絕話柿子(上篇)。台灣花藝 131:66-69。
傅琦媺。1994。柿果二氧化碳脫澀之生理變化及微細構造。國立中興大學園藝學研究所碩士論文。79p。
馮詩蘋。2000。牛心柿不同脫澀方法之脫澀機制。國立中興大學園藝學研究所碩士論文。105p。
楊宗獻、翁慎微、楊耀祥。1996。‘二十世紀’番石榴果實發育之研究。興大園藝 21:1-16。
溫英杰。1995。柿。pp.191-198。台灣農家要覽。豐年社。台北。
農業統計年報。2002。pp.109。行政院農業委員會出版。
鄒采蘋。2002。脫澀處理及貯藏溫度對柿果組成分之影響。國立中興大學園藝學研究所碩士論文。88p。
廖秀真。1994。蓮霧果實發育期間之生理變化及果皮離體培養。國立中興大學園藝學研究所碩士論文。pp.1-42。
劉秀玲。1999。‘四周柿’益收脫澀期間組成分之變化。國立中興大學園藝學研究所碩士論文。85p。
劉富文。1995。園產品採後處理及貯藏技術。台灣省青果運銷合作社。台灣、台北 pp.42-43。
歐利葉、彭永宏、李玲、潘瑞熾。1998。熱空氣處理對香蕉果實生理變化的影響。園藝學報 25:139-142。
蔡瑞真。1994。脫澀方法對柿果軟化之影響。國立中興大學園藝學研究所碩士論文。83p。
蔡龍銘。1986。獼猴桃果實發育期間之生理變化。中國園藝 32:25-33。
鄭雅凌。2001。柿果貯藏之研究。國立中興大學園藝學研究所碩士論文。126p。
謝慶昌、林慧玲、傅琦媺、李國權。1997。水分狀態和柿果脫澀之關係。國立中興大學台中夜間部學報 3:553-558。
謝慶昌、林慧玲、蔡平里。1992。柿果二氧化碳脫澀機制之模式試驗。中國園藝 38:24-29。
謝慶昌、蔡平里。1995。澀柿傳統石灰水浸漬脫澀處理方法之改良。中國園藝. 41(2):136-143。
謝慶昌。1985。楊桃果實生長調查及採收後處理之研究。國立台灣大學園藝學研究所碩士論文。pp.1-8。
謝慶昌。1999。溫度與‘平核無’柿果酒精脫澀時果實脫澀與軟化之關係。中國園藝 46:45-54。
鍾立展。1998。芒果(Mangifera indica L.)果實發育之研究。國立中興大學園藝學研究所碩士論文。pp.48-57。
Akamine, E. K. and T. Goo. 1981. Carbon dioxide and ethylene production in Diospyros discolor Willd. HortScience 16:519.
Antunes, M. D. C. and E. M. Sfakiotakis. 2000. Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of ‘Hayward’kiwifruit. Postharvest Biol. Technol. 20:251-259.
Atta-Aly, M. A. 1992. Effect of high temperature on ethylene biosynthesis by tomato fruit. Postharvest Biol. Technol. 2:19-24.
Awad, M. and H. Amenomori. 1972. Astringency removal in persimmon fruits with ethephon. HortScience 7:174.
Barbera, G., G. Carimi, P. Inglese, and M. Panno. 1992. Physical, morphological and chemical changes during fruit development and ripening in three cultivars of prickly pear (Opuntia ficus-indica L. (Miller)). J. Hort. Sci. 67:307-312.
Ben-Arie, R. and L. Sonego. 1993. Temperature affects astringency removal and recurrence in persimmon. J. Food Sci. 58:1397-1400.
Blankenship, S. M. and D. G. Richardson. 1985. Changes in phenolic acids and internal ethylene during long-term cold storage of pear. J. Amer. Soc. Hort. Sci. 110:336-339.
Bollard, E. G. 1970. The physiology and nutrition of developing fruits. pp.387-425. In: A. C. Hulem (eds.), The biochemistry of fruits and their product. Vol.1. Academic. Press. New York.
Brady, C. J. 1987. Fruit ripening. Ann. Rev. Plant Physiol. 38:155-178.
Cheng ,G. W. and P. J. Breen. 1991. Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J. Amer. Soc. Hort. Sci. 116:865-869.
Clark, C. J. and J. S. MacFall. 1996. Magnetic resonance imaging of persimmon fruit (Diospyros kaki) during storage at low temperature and under modified atmosphere. Postharvest Biol. Tech. 9:97-108.
Clark, C. J. and S. K. Forbes. 1994. Nuclear magnetic resonance imaging of the development of chilling injury in ‘Fuyu’ persimmon (Diospyros kaki). N. Z. J. Corp Hort. Sci. 22:209-215.
Collins, R. J. and J. S. Tisdell. 1995. The influence of storage time and temperature on chilling injury in ‘Fuyu’ and ‘Suruga’ persimmon (Diospyros kaki L.) grown in subtropical Australia. Postharvest Biol. Tech. 6:149-157.
Coombe, B. G. 1976. The development of fleshy fruits. Ann. Rev. Plant Physiol. 27:507-528.
Cosgrove, D. J. 2000. Expansine growth of plant cell walls. Plant Physiol. Biochem. 38:109-124.
Cutillas-Iturralde, A., I. Zarra, and E. P. Lorences. 1993. Pectin solubilization during fruit ripening occurs in apparent absence of polygalacturonase activity. Physiol. Plant. 89:369-375.
Datta, M. N. and S. K. Mukherjee. 1980. Studies on the changes during growth and development of guava (Psidium guajava L.). Indian J. Hort. 3:211-219.
Eaks, I. L. 1967. Ripening and astringency removal in persimmon fruits. Proc. Amer. Soc. Hort. Sci. 91:868-875.
Fallik, E., S. Grinberg, S. Alkalai, O. Yekutieli, A. Wiseblum, R. Regev, H. Beres, and E. Bar-Lev. 1999. A unique rapid hot water treatment to improve storage quality of sweet pepper. Postharvest Biol. Technol. 15:25-32.
Fischer, R. L. and A. B. Bennett. 1991. Role of cell wall hydrolase in fruit ripening. Ann. Rev. Plant Physiol. 42:675-703.
Florissen, P., J. S. Ekman, C. Blumenthal, W. B. McGlasson, J. Conroy, and P. Holford. 1996. The effects of short heat-treatments on the induction of chilling injury in avocado fruit. Postharvest Biol. Technol. 8:129-141.
Fukushima, T., T. Kitamura, H. Murayama, and T. Yoshida. 1991. Mechanisms of astringency removal by ethanol treatment in ‘Hiratanenashi’ kaki fruits. J. Japan. Soc. Hort. Sci. 60:685-694.
Gonzalez-Aguilar, G. A., J. Fortiz, R. Cruz, R. Baez, and C. Y. Wang. 2000. Methyl jasmonate reduces chilling injury and maintains postharvest quality of mango fruit. J. Agric. Food Chem. 48:515-519.
Gonzalez-Aguilar, G. A., L. Zacarias, M. Mulas, and M. T. Lafuente. 1997. Temperature and duration of water dips influence chilling injury, decay and polyamine content in ‘Fortune’ mandarins. Postharvest Biol. Technol. 12:61-69.
Hopping, M. E. and N. J. A. Hacking. 1983. A comparison of pollen application methods for the artificial pollination of kiwifruit. Acta Hort. 139:41-50.
Huang, H. and J. Xu. 1983. The development pattern of fruit tissues and their correlative relationship in Litchi chinensis Sonn. Sci. Hort. 19:335-342.
Huber, D. J. 1983. The role of cell wall hydrolases in fruit softening. Hort. Rev. 5:162-219.
Itamura, H. 1986. Relationships between fruit softening, respiration and ethylene production after deastringent treatment by alcohol in Japanese persimmon (Diospyros kaki Thunb. var. Hiratanenashi) fruit harvested at various stages. J. Japan. Soc. Hort. Sci. 55:89-98.
Itamura, H., T. Kitamura, S. Taira, and H. Harada. 1991. Relationship between fruit softening, ethylene production and respiration in Japanese persimmon ‘Hiratanenashi’. J. Japan. Soc. Hort. Sci. 60:695-701.
Itamura, H., T. Tanigawa, and H. Yamamura. 1995. Composition of cell-wall polysaccharides during fruit softening in ‘Tonewase’ Japanese persimmon. Acta Hort. 398:131-138.
Itamura, H., Y. Ohno, and H. Yamamura. 1997. Characteristics of fruit softening in Japanese persimmon ‘Saijo’. Acta Hort. 436:179-188.
Ito, S. 1971. The persimmon. pp.281-302. In: A. C. Hulme (eds.), The biochemistry of fruits and their product. Vol.2. Academic. Press. New York and London.
Itoo, S. 1986. Persimmons. pp.355-370. In: S. P. Monselise (eds.), CRC Handbook of fruit set and development. CRC Press, Inc. Boca Raton, Florida.
Iwata, T., K. Nakagawa, and K. Ogata. 1969. Relationship between the ripening of harvest fruits and the respiratory pattern: I. On the class of respiratory pattern of Japanese persimmons. J. Japan. Soc. Hort. Sci. 38:194-201.
Janas, H. W. and C. Frenkel. 1978. Promotion of softening processes in pear by acetaldehyde, independent of ethylene action. J. Amer. Soc. Hort. Sci. 103:397-400.
Kao, Y. Y., S. A. Harding, and C. J. Tsai. 2002. Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of Quaking Aspen. Plant Physiol. 130:796-807.
Kato, K. 1984. Astringency removal and ripening as related to ethanol concentration during the de-astringency by ethanol in persimmon fruits. J. Japan. Soc. Hort. Sci. 53:278-289.
Kato, K. 1987. Astringency removal and ripening as related to temperature during the de-astringency by ethanol in persimmon fruits. J. Japan. Soc. Hort. Sci. 55:498-509.
Kato, K. 1990. Astringency removal and ripening in persimmons treated with ethanol and ethylene. HortScience 25:205-207.
Ke, D. and E. S. Jr. Mikal. 1989. Regulation of russet spotting, phenolics metabolism, and IAA oxidase by low oxygen in iceberg lettuce. J. Sci. Food. Agric. 114:638-642.
Kitagawa, H. and P. G. Glucina. 1984. Persimmon culture in New Zealand. Science Information Publishing Centre, Wellington.
Kubota, N. 1996. Phenolic Content and L-Phenylalanine Ammonia-Lyase Activity in Peach Fruit. pp.81-95. In: Linskens, H. F. and F. Jackson(eds.), Plant Analysis. Springer-Verlag Berlin Heidelberg, Inc, Germant.
Lay-Yee, M. S. Ball, S. K. Forbes, and A. B. Woolf. 1997. Hot-water treatment for insect disinfestations and reduction of chilling jnjury of ‘Fuyu’ persimmon. Postharvest Biol. Technol. 10:81-87.
Lee, S. K. and R. E. Young. 1983. Growth measurement as an indication of avocado maturity. J. Amer. Soc. Hort. Sci. 108:395-397.
Lohani, S., P. K. Trivedi, and P. Nath. 2004. Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: effect of 1-MCP, ABA and IAA. Postharvest Biol. Technol. 31:119-126.
Lurie, S. 1998a. Postharvest heat treaments. Postharvest Biol. Technol. 14:257-269.
Lurie, S. 1998b. Postharvest heat treatments of horticultural crops. Horticultural Reviews 22:91-121.
Lurie, S., S. Othman, and A. Borochov. 1995. Effect of heat treatment on plasma membrane of apple fruit. Postharvest Biol. Technol. 5:29-38.
Lyons, J. M. 1973. Chilling injury in plants Ann. Rev. Plant Physiol. 24:455-466.
MacRae, E. A. 1987. Development of chilling injury in New Zealand growth ‘Fuyu’ persimmon during storage. New Zealand J. Exp. Agric. 15:333-344.
Maotani, T., M. Yannada, A. Kurihara, T. Alimoto, and Y. Iiya. 1982. Storage of Japanese persimmon of pollination constant non-astringent type in polyethylene bags with ethylene absorbent. J. Japan. Soc. Hort. Sci. 51:195-202.
Matsuo, T. and H. Kitagawa. 1988. Effect of ethylene absorbent on invertase activity of persimmon fruit. J. Japan. Soc. Hort. Sci. 57:507-517.
Matsuo, T. and H. Kitagawa. 1989. Effect of ethylene absorbent on polygalacturonase activity of persimmon fruit. J. Japan. Soc. Hort. Sci. 57:697-701.
Matsuo, T. and S. Ito. 1977. On mechanisms of removing astringency in persimmon fruits by carbon dioxide treatment. I. Some properties of the two processes in the de-astringency. Plant Cell Physiol. 18:17-25.
Matsuo, T. and S. Ito. 1978. The chemical structure of kaki-tannin from immature fruit of persimmon (Diospyros kaki L.). Agric. Biol. Chem. 42:1637-1643.
Matsuo, T. and S. Ito. 1982. Model experiment for de-astringency of persimmon fruit with high carbon dioxide treatment: in vitro gelatin of kaki-tannin reacting with acetaldehyde. Agric. Biol. Chem. 46:683-689.
Matsuo, T., J. Shinohara, and S. Ito. 1976. An improvement on removing astringency in persimmon fruits by carbon dioxide gas. Agric. Biol. Chem. 40:215-217.
Matsuo, T., S. Itoo, and R. Ben-Arie. 1991. A model experiment for elucidating the mechanism of astringency removal in persimmon fruit using respiration inhibitors. J. Japan. Soc. Hort. Sci. 60:437-442.
McCollum, T. G., H. Doostdar, R. T. Mayeer, R. E. McDonald. 1995. Immersion of cucumber fruit in heated water alters chilling induced physiological changes. Postharvest Biol. Technol. 6:55-64.
McDonald, R. E., T. G. McCollum, and E. A. Baldwin. 1996. Prestorage heat treatments influence free sterols and flavor volatiles of tomato stored at chilling treatment. J. Amer. Soc. Hort. Sci.121:531-536.
McGuire, R. G. and W. F. Reeder. 1992. Predicting marking quality of grapefruit after hot air quarantine treatment. J. Amer. Soc. Hort. Sci. 117:90-95.
Morris, L. L. 1982. Chilling injury of horticultural crops:an overview. HorScience 17:161-162.
Nitsch, J. P. 1953. The physiology of fruit growth. Ann. Rev. Plant Physiol. 4:199-227.
Paull, R. E., N. J. Chen, J. Deputy, H. Huang, G. Cheng, F. Parkash, and S. Ran. 1984. Litchi growth and compositional changes during fruit development. J. Amer. Soc. Hort. Sci. 109:817-821.
Pesis, E. and R. Ben-Arie. 1984. Involvement of acetaldehyde and ethanol accumulation during induced deastringency of persimmon fruits. J. Food Sci. 49:896-899.
Pesis, E. and R. Ben-Arie. 1986. Carbon dioxide assimilation during postharvest removal of astringency from persimmon fruit. Physiol Plant. 67:644-648.
Pesis, E., L. Aharon, and R. Ben-Arie. 1988. Role of acetaldehyde production in the removal of astringency from persimmon fruits under various modified atmospheres. J. Food Sci. 53:153-156.
Pocasangre, E. H. E., F. L. Finger, R. S. Barros, and R. Puschmann. 1995. Development and ripening of yellow passion fruit. J. Hort. Sci. 70:575-576.
Porat, R., D. Pavoncello, J. Peretz, B. Weiss, A. Daus, L.Cohen, S. Ben-Yehodhua, E. Fallik, S. Droby, and S. Lurie. 2000. Induction of resistance to Penicillium digitaum and chilling injury in‘Star Ruby’grapefruit by a short hot-water rinse and brushing treatmnet. J. Am. Soc. Hort. Sci. 75:428-432.
Rivero, R. M., J. M. Ruiz, P. C. García, L. R. Lópex-Lefebre, E. Sánchez, and L. Romero. 2001. Resistance to cold and great stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160:315-321.
Rose, J. K. C., H. H. Lee, and A. B. Bennett. 1997. Expression of divergent expansin gene is fruit specific and ripening-regulated. Proc. Natl. Acad. Sci. USA 94:5955-5960.
Sabehat, A., S. Lurie, and D. Weiss.1998. Expression of small heat-shoch proteins at low temperatures. Plant Physiol. 117:651-658.
Saltveit, M. E. 2000. Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock. Postharvest Biol. Technol. 21:61-69.
Saltveit, M. E. and L. L. Morris. 1990. Overview on chilling injury of horticultural crops. P.3-15. In:C. Y. Wang (eds.), Chilling Injury of Horticultural Crops. CRC Press, Inc. Boca Raton, Florida.
Sanchez-Ballesta, M. T., M. T. Lafuente, L. Zacarias, and A. Granell. 2000. Involvement of phenylalanine ammonia-lyase in the response of Fortune mandarin to cold temperature. Physiol. Plant. 108:382-389.
Schirra, M., M. Agabbio, G. D’hallewin, M. Pala, and R. Ruggiu. 1997. Response of ‘Tarocco’ oranges to picking date, postharvest hot water dips, and chilling storage temperature. J. Agric. Food Chem. 45:3216-3220.
Sharma, Y. K. and K. R. Davis. 1994. Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol. 105:1089-1096.
Shields, C. R., T. J. Orton, and C. W. Stuber. 1983. An outline of general resourse needs and procedures for the electrophoretic separation of active enzymes from plant tissue. pp.433-516. In: Tanksley, S. D., and T. J. Orton (eds.), Isozymes in Plant Genetics and Breeding, Part A. Elsevier, Amsterdam.
Stanley, J. K. 1997. Postharvest Physiology of Perishable Plant Products. pp.187-207. Exon Press. U.S.A.
Sugiura, A. and T. Tomana. 1983. Relationships of ethanol production by seeds of different types of Japanese persimmons and their tannin content. HortScience. 18:319-321.
Swain, T. and W. E. Hillis. 1959. The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10:63-68.
Taira, S. 1996. Astringency in persimmon. pp.97-110. In: Linskens, H. F. and F. Jackson(eds.), Plant Analysis. Springer-Verlag Berlin Heidelberg, Inc, Germant.
Taira, S. and M. Ono. 1997. Reduction of astringency in persimmon caused by adhesion of tannins to cell wall fragments. Acta Hort. 436:235-238.
Taira, S. and M. Ono. 1997. Reduction of astringency in persimmon caused by adhesion of tannins to cell wall fragments. Acta Hort. 436:235-238.
Taira, S., H. Itamura, and K. Abe. 1990. Effect of harvest maturity on removal of astringency in Japanese persimmon, (Diospyros kaki Thunb.), ‘Hiratanenashi’ fruits. J. Japan. Soc. Hort. Sci. 58:813-818.
Taira, S., H. Itamura, K. Abe, and S. Watanabe. 1989. Comparison of the characteristics of removal of astringency in two Japanese persimmon cultivars, ‘Denkuro’ and ‘Hiratanenashi’. J. Japan. Soc. Hort. Sci. 58:319-325.
Taira, S., I. Satoh, and S. Watanabe. 1992. Relationship between differences in the ease of removal of astringency among fruits of Japanese persimmon and their ability to accumulate ethanol and acetaldehyde. J. Japan. Soc. Hort. Sci. 60:1003-1009.
Taira, S., K. Onodera, H. Itamura, and S. Watanabe. 1994. Differences between the Japanese persimmon ‘Denkuro’ and ‘Hiratanenashi’ on acetaldehyde production by their flesh discs. J. Japan. Soc. Hort. Sci. 62:897-902.
Taira, S., M. Ono, and M. Otsuki. 1998. Effects of freezing rate on atringency reduction in persimmon during and after thawing. Postharvest Biol. Technol. 14:317-332.
Taira, S., M. Ono, and N. Matsumoto. 1997. Reduction of persimmon astringency by complex formation between pectin and tannins. Postharvest Biol. Technol. 14:317-324.
Taira, S., Y. Kubo, and A. Sugiura. 1987. Comparative studies of postharvest fruits quality and storage quality in Japanese persimmon in relation to different methods for removal of astringency. J. Japan. Soc. Hort. Sci. 56:215-221.
Tamura, F., K. Tanabe, A. Itai, and M. Hasegawa. 1999. Characteristics of acetaldehyde accumulation and removal of astringency with ethanol and carbon dioxide treatment in ‘Saijo’ persimmon fruit. J. Japan. Soc. Hort. Sci. 68:1178-1183.
Tomás-Barberán, F. A., J. Loaiza-Velarde, A. Bonfanti, and M. E. Saltveit. 1997. Early-wound and ethylene-induced changes in phenylpropanoid metabolism in harvested lettuce. J. Amer. Soc. Hort. Sci. 122:399-404.
Tsantilli, E. 1990. Changes during development of ‘Tsapela’ fig fruit. Sci. Hort. 44:227-234.
Tucker, G. A. 1993. Introduction. pp.1-51. In: Seymour, G. B., J. E. Taylor, and G. A. Tucker (eds.), Biochemistry of fruit ripening. Chapman & Hall. London.
Tucker, G. A., N. G. Robertson, and D. Grierson. 1987. Changes in polygalacturonase isozymes during the ripening of normal and mutant tomato fruit. Eur. J. Biochem. 112:119-124.
Vallejos, C. E. 1983. Enzyme activity training. In: Tankley, S. D., and T. J. Orton (eds.), Isozymes in Plant Genetics and Breeding, Part A. Elsevier, Amsterdam 456-469.
Vidrih, R., M. Simcic, J. Hribar, and A. Plestenjak. 1994. Astringency removal by high CO2 treatment in persimmon fruit (Diospyros kaki). Acta Hort. 368:652-656.
Woolf, A. B., S. Ball, K. J. Spooner, M. Lay-Yee, I. B. Ferguson, C. B. Watkins, A. Gunson, and S. J. Forbes. 1997. Reduction of chilling in the sweet persimmon ‘Fuyu’ during storage by dry air heat treatments. Postharvest Biol. Technol. 11:155-164.
Yamada, M., S. Taira, M. Ohtsuki, A. Sato, H. Iwanami, H. Yakushiji, R. Wang, Y. yang, and G. Li. 2002. Varietal differences in ease of astringency removal by carbon dioxide gas and ethanol vapor treatments among Oriental astringent persimmons of Japanese and Chinese origin. Sci. Hort. 94:63-72.
Zhou, Y., J. M. Dahler, S. J. R. Underhill, and R. U. Wills. 2003. Enzymes associated with blackheart development in pineapple fruit. Food Chem. 80:565-572.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔