(18.207.129.82) 您好!臺灣時間:2021/04/19 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉秀妮
論文名稱:台灣楊桃整合性防治之實證經濟分析
論文名稱(外文):An Empirical Analysis on the Economic Effectiveness of Integrated Pest Management for Taiwan Carambola
指導教授:萬鍾汶萬鍾汶引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用經濟學研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:85
中文關鍵詞:整合性防治楊桃間接成本函數
外文關鍵詞:Integrated Pest Management (IPM)CarambolaTranslog Cost Function
相關次數:
  • 被引用被引用:1
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  作物病蟲害防治傳統上以施用化學藥劑為主,素有增加造成生產成本、環境破壞,及引發消費者對生鮮食品安全性顧慮之虞,國內外逐漸採整合性防治(Integrated Pest Management, IPM)予以導正。IPM乃為利用多元化的防治方法控制害物族群,配合正確的農藥使用以減少收成損失之作物栽培管理方法。楊桃為台灣重要經濟果樹之一,近年來受病蟲害危害嚴重,農政單位雖已針對楊桃主要產地推廣整合性防治,並發現有良好成效,但IPM的經濟效益並未加以評估。
  本研究乃欲實證採用整合防治對楊桃成本之影響,研究範圍為台灣楊桃主要產區苗栗卓蘭。首先在果農追求追求生產成本極小的經濟目標下,設立楊桃整合性防治決策模型,進而應用Heckman兩階段模型來實證楊桃果農採行IPM之經濟行為。第一階段為分析果農採用IPM決策之影響因素,並推估果農採用IPM之機率;第二階段為實證果農之間接成本函數,並將採用機率納入實證函數中,最後採用IPM對成本支出的彈性變動來分析在採用決策對農場之經濟面影響。
  根據實證結果分析所獲得之重要結論可歸納如下:
1.實證的第一階段為分析影響IPM決策之因素,由其推估結果得知,採用IPM與否乃受到社經因素的影響,凡是越瞭解IPM的意義及方法者就越會增加採行IPM的機率;而果農年齡越大、種植楊桃經驗越久者、有進行出口者及植株密度越大的果園,皆易增加採用的機率。
2.第二階段是利用成本函數估計,並加入第一階段推估之預測採用機率及Mill反比率來推估成本函數。結果發現,成本與採用IPM的機率為負向的關係(-23.4140),即採用IPM的機率越高,成本越低,也就是採用IPM的決策與成本的考量有關。在Mill反比例的估計為顯著的,表示選擇採用整合性防治之果農的確與成本支出存在某種關係。另外IPM支出彈性-22.46,即表示當增加1%的採用機率,則會減少22.46%的成本支出。即當全區採用率增加(越多果農採用)時,除了增強IPM的效果,也可降低生產成本。
3.在Allen偏替代彈性的分析中,農藥價格對勞動要素及其他要素投入量、肥料價格對材料要素投入量、勞動要素價格對材料及其他要素投入量、材料要素價格對其他投入量其替代彈性皆大於1且顯著,表示果農對這些要素間較有調整的能力,可以靈活的應用搭配;而農藥要素價格對材料要素投入量、肥料價格對其他要素投入量之彈性小於1且顯著,表示要素之間調整較為僵硬,不易變動。
4.本研究採Heckman兩階段估計來進行採行IPM之分析,除了說明影響採用IPM機率之影響,更說明楊桃果農採用IPM決策上自我選擇的發生,表示選擇採用與不採用IPM者的確存在成本上的考量。本研究所建立之實證模型可用於不同作物之IPM決策。本研究實證的結果提供農政單位繼續推行IPM之經濟性依據,未來除了可從病蟲害的減少來推廣IPM,更可由成本支出的降低來做為推廣之指標。
Farmers used to use chemical medicament to prevent the blight to crops, but the medicament is likely to increase the cost of products, pollute the environment and make the consumers worry about the safety of the agricultural products. As a result, people around the world to reduce the effect of using the chemical medicament use Integrated Pest Management (IPM). IPM is the multiple methods used to control the harmful group to the agricultural products; that is, using an adequate amount of pesticides to decrease to loss of the crops. Carambola is one of Taiwan’s important economic plants; however, the blight to carambola is very serious, which are mostly caused by Oriental Fruit Fly and Bacterial Leaf Spot Disease. To be more convenient to quarantine in export trade, agricultural authorities have used IPM in carambola’s place of production since 1999, and there are good effects reported.
Although the effect of IPM has been proved, the fruit farmers will not be persuaded unless the multiple methods used to control the harmful group to the agricultural products are proved positive for the economic prospect of production. In fact, the economic effect of IPM has not been evaluated yet. Therefore, this research is going to use the data of the carambola in Miaoli County to prove the effectiveness of the multiple methods (IPM). Therefore, this research applies Hechman’s two-stage estimation for experimenting the economic behaviors of the fruit farmers: The first stage will analyze the factors that can affect the result of IPM. In second stage, the Translog cost function will used to illustrate adoptor’s cost expense; moreover, the predicted adoption probabilities will append to cost function. Finally, it applies the elasticity of IPM expense to analyze the effect on the decisions of the economic prospect of the farms. The experiment can be concluded as the following:
1.The first stage of the experiment is to analyze the factors that can affect the result of IPM. According to the inferences, adopting IPM or not is affected by the society and economy; that is, the more we understand the meaning and methods of IPM, the more we are likely to adapt IPM. Besides, if the fruit farmers are older, are experienced in planting the carambolas, are exporting the carambolas or are taking care of fruit farms that grow plants densely, they are more likely to adopt IPM.
2.The second stage is to use the cost function to estimate and add the inferences from the first stage that predict the probability of adoption and the inference of cost function by inverse Mill’s ratio. The result is that the cost and the probability of adopting IPM have negative effect. In addition, elasticity of IPM expense is -22.46; that is, when the probability of adoption increases 1%, the expense of cost decreases 22.46%. When the probability of adopting IPM increase, the effectiveness of IPM will also increase and the cost of production will be reduced.
3.In Allen elasticities of substitution analysis, elasticity of pesticides’ price to the laboring factors, the cost of fertilizer to the material factors, the price of the laboring factors to the materials and other factors, and the material factors to other input are all greater that 1 and signficantly. It means that the farmers have the ability to adjust these factors and apply them flexibly. If the pesticides’ price to the laboring factors and cost of fertilizer to the material factors are smaller than 1, it means that the factors can not be adjusted flexibly.
4.This research uses Hechman’s two-stage estimation to analyze IPM. It not only explains the effect of the probability of adopting IPM, but also explains the choices of the carambola-farmers make because of the cost. The experiment of the research established can be applied to the decision of IPM on different plants. It offers the agricultural authorities an economic basis for the following plans. In the future, IPM can be promoted according to the decreasing of blights; moreover, it can be promoted according to the cost.
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究方法及步驟 3
第三節 研究範圍及資料來源 3
第二章 台灣楊桃經濟病蟲害防治現況 5
第一節 楊桃之產地與生產現況 5
第二節 楊桃生產成本 8
第三節 楊桃病蟲害防治現況 13
第四節 卓蘭地區楊桃生產及防治概況 18
第五節 台灣楊桃銷售概況 22
第三章 整合性防治經濟效益評估模式之建立 27
第一節 整合性防治之意義 27
第二節 整合性防治經濟效益之文獻回顧 29
第三節 理論基礎 33
第四章 資料收集 40
第一節 問卷設計及及樣本調查 40
第二節 樣本農場生產情形分析 44
第三節 群間差異性分析 49
第五章 實證模型推估及結果分析 53
第一節 實證模型的建立 53
第二節 變數說明與資料處理 58
第三節 實證結果 61
第四節 實證結果分析 66
第六章 結論與建議 71
第一節 結論 71
第二節 建議 73
第三節 研究限制與未來研究方向 75
參考文獻 76
附錄一 81
表目錄 頁次
表2-1 楊桃主要品種之產地分布及產期 6
表2-2 台灣地區歷年楊桃之產量(地區別) 7
表2-3 台灣地區楊桃之種植面積 7
表2-4 臺灣地區楊桃單位生產成本(2002年) 10
表2-5 楊桃施用農藥之價格及規格 12
表2-6 細菌病斑點病施用藥劑名稱及稀釋倍數 15
表2-7 楊桃主要害蟲藥劑及非藥劑防治方法 18
表2-8 整合性防治技術示範結果比較 21
表2-9 馬來西亞種楊桃近3年月平均價及交易量 24
表2-10 軟枝蜜絲種楊桃近3年月平均價及交易量 24
表2-11 我國鮮楊桃2003年出口量及出口值 25
表2-12 我國鮮楊桃2002年出口量及出口值 25
表2-13 臺灣地區楊桃之收益(2002年) 26
表4-1 楊桃生產及成本調查之樣本抽樣分配 43
表4-2 樣本楊桃果園特性-果樹特性(總樣本N=60) 44
表4-3 樣本果園特性-農場主特性(總樣本N=60) 45
表4-4 樣本果園特性-農場主特性(採用及未採用IPM) 45
表4-5 樣本果園生產成本支出統計資料 46
表4-6 樣本果園產出與收益 47
表4-7 樣本果園對整合性防治之認知及栽培意願 48
表4-8 樣本果園遭受病蟲害之情況 49
表4-9 樣本子群對整合性防治認知之差異性檢定結果 52
表5-1 Probit模型變數說明 59
表5-2 Probit模型估計結果 61
表5-3 Cobb-Douglas成本函數估計結果 63
表5-4 Translog成本函數參數估計結果 64
表5-5 楊桃產出彈性及投入要素彈性表 68
表5-6 楊桃投入要素自身及交叉價格彈性 69
表5-7 楊桃生產要素間Allen偏替代彈性 70
圖目錄 頁次
圖2-1 台灣地區馬來西亞種楊桃歷年交易量與平均價 9
圖2-2 台灣地區軟枝蜜絲楊桃歷年交易量與平均價 9
圖2-3 台灣楊桃生產人工費用支出比較-男工 22
圖2-4 台灣楊桃生產人工費用支出比較-女工 23
王家興,1996,吉園圃安全用藥認證蔬菜之經濟效益評估,碩士論文,中興大學農業經濟學系。
安寶貞、蔡志濃,2002,「楊桃病害與管理」,農業世界,229:22-25。
吳宗正,1981,變異數分析-理論與應用,華泰書局。
李世滄,2002,「楊桃五稜呼五斂」,農業世界,229:44-47。
林灼榮,鄒季博,1989,「台灣稻米生產結構分析-超越對數成本函數之應用」,逢甲學報,22:83-113。
施劍鎣,2002,「利用捕植蟎生物防治楊桃葉蟎技術」,農業世界,229:32-43。
洪巧珍,2002,「楊桃主要害蟲之管理與防疫」,農業世界,230:13-21。
郭念萱,2002,影響楊桃農參與東方果實蠅共同防治意願之因素,碩士論文,中興大學農業推廣教育所。
彭淑貞,1998,「卓蘭地區楊桃細菌性斑點病之發生與防治」,苗栗區農業專訊,4:12-13。
彭詩育,2002,「台灣愛文芒果產業要素替代與經濟效益之研究」,碩士論文,台灣大學農業經濟研究所。
彭瑞菊、鄭安秀,2002,「楊桃細菌性斑點病之發現及監測技術」,農業世界,41:17-19。
黃玉馨,2002,「楊桃生產成本與收益分析」,農業世界,229:26-27。
楊秀珠,2000,「綜合管理之理念」,楊桃綜合管理,楊秀珠主編,行政院農業委員會藥物毒物試驗所。
萬鍾汶,1993,台灣地區混合式水產養殖技術之經濟分析,農業經濟半年刊,54:69-116
萬鍾汶,2002,「楊桃細菌性斑點病疫區及非疫區防治策略成本效益分析」,中興大學應用經濟學系。
萬鍾汶,2002,台灣重要水果外銷中國大陸潛力與策略之研究-以楊桃為例,中興大學應用經濟學系。
劉碧鵑,2002,「臺灣楊桃的生產與主要栽培品種」,農業世界, 211:17-23。
劉碧鵑、翁瑞亨,2002,「臺灣楊桃的產業現況及其永續經營」,農業世界,229:10-18。
蔡志濃、安寶貞,1999,「楊桃細菌性斑點病之發生及防治」,農業世界,189:60-61。
蔡志濃、安寶貞、許秀惠、林俊義,1999,「楊桃細菌性斑點病之病因探討及防治成果」,技術服務,10: 7-8。
顏辰鳳、郭克忠,2002,「推動病蟲害整合性防治技術-提升楊桃產業競爭力」,農業世界,230:22-26。
Babcock, B. A., E. Lichtenberg, D. Zilberman, 1992, “Impact of Damage Control and Quality of Output: Estimating Pest Control Effectiveness.” American Journal of Agricultural Economics, 74: 163-172.
Bajwa, W. I. and M. Kogan. 2002, Compendium of IPM Definitions (CID)- What is IPM and how is it defined in the Worldwide Literature? IPPC Publication No. 998, Integrated Plant Protection Center (IPPC), Oregon State University, Corvallis, OR 97331, USA
Botrell, D. R., December 1979, Integrated Pest Management. Council on Environmental Quality. Washington, D. C.: U.S. Government Printing Office.
Breusch, T. S., and A. R. Pagan, 1979, “A Simple Test for Heteroskedasticity and Random Coeffieient Variation.” Econometrica, 47:1287-1294
Carlson, G. A., and A. Mohamed, 1986, “Economic Analysis of Cotton-Insect Control in the Sudan Gezira.” Crop Protection, 5: 348-354.
Cuynoa, L. C. M., G. W. Norton, and A. Rola, 2001, “Economic Analysis of Environmental Benefits of Integrated Pest Management: a Philippine Case Study.” Agriculture Economics, 25:227-233.
Diewert, W. E., 1974, Application of Duality Theory, Frontiers of Quantitative Economics, Amsterdam, North-Holland
Fernandez-Cornejo, J., 1996, “The Microeconomic Impact of IPM Adoption: Theory and Application.” Agricultural and Resource Economics Review, 25 (2):149-160.
Fernandez-Cornejo, J., 1998, “Environmental and Economic Consequences of Technology Adoption: IPM in Viticulture.” Agricultural Economics, 18:145-155.
Fernandez-Cornejo, J., E. D. Beach, Wen-Yuan Huang, 1994, “The Adoption of IPM Techniques by Vegetable Growers in Florida, Michigan, and Texas.” Journal of Agricultrual and Applied Economics, 1:158-172.
Fernandez-Cornejo, J., J. Ferraioli, 1999, “The Environmental Effects of Adopting IPM Techniques: The Case of Peach Producers.” Journal of Agricultural and Applied Economics, 31 (3):551-564.
Greene, W. H., 2003. Econometric Analysis, 5d ed. New York: Prentice Hall.
Gronau, R., 1974, “Wage Comparisons: A Selectivity Bias.” Journal of Political Economy, 82(6):1119-1155
Hall, D. C., G. M. Duncan, 1984, “Econometric Evaluation of New Technology with and Application to Integrated Pest Management.” American Journal of Agricultural Economics 66:624-633.
Heckman, J. J., 1976, “The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models.” Annals of Economic and Social Measurement, 47(1):153-161
Heckman, J. J., 1979, “Sample Selection Bias As A Specification Error.” Econometrica, 47(1):153-161
Hicks, J., 1946, Value and Capital, Oxford England: Clarendon Press.
Kirby, H. W., C. E. Main, and G. A. Carlson, 1983, “Economic Analysis of Managing Multiple Pests in Tobacco.” Plant Diease, 67: 1099-1102.
Lewis, H. G., 1974, “Comments on Selectivity Biases in Wage Comparisons.” Jounrnal of Political Economy, 82:1145-1155
Lichtenberg, E., and D. Zilberman, 1986, “The Econometrics of Damage Control: Why Specification Matters.” American Journal of Agricultural Economics, 68: 261-273
Maddala, G. S. 1983, Limited-Dependent and Qualitative Variables in Econometrics, Cambridge: Cambridge University Press.
Norton, G. W. and J. Mullen, 1994, Economic Evaluation of Integrated Pest Management Programs. Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
Oskam, A. J., H. Van Zeilt, G. J. Thijssen, G. A. A. Wossink, R. Vijtigschild, 1993, Pesticide use and Pesticide Policy in the Netherlands, Wageningen Agricultural University.
Roy, A., 1951, “Some Thoughts on the Distribution on Earnings.” Oxford Economic Papers, 3:135-146
Saha, A., R. Shumway, and A. Havenner, 1997, “The Economics and Econometrics of Damage Control.” American Journal of Agricultural Economics, 79: 773-785.
Shephard, R., 1953, Cost and Production Function. Princeton, N.J.: Princeton University Press.
Smith, G. S., M. E. Wetzstein, G. K. Douce, 1987, “Evaluation of Various Pest-management Characteristics.” Southern Journal of Agricultural Economics 19:93-101
Taylor, C. R., 1980, “The Nature of Benefits and Costs of Use of Pest Control Methods.” American Journal of Agricultural Economic 62:1007-1011
Varian, H. R., 1978, Microeconomic Analysis, 3nd ed., New York: Norton & Company.
Vandeman, A., J. Fernandez-Cornejo, S. Jans, B. H. Lin., September, 1994, “Adoption of Integrated Pest Management in U. S. Agriculture.” Agriculture Information Bulletin No. 707. USDA/ERS.
Wetzstein, M. E., W. N. Musser, D. K. Linder, G. K. Douce, 1985, “An Evaluation of Integrated Pest Management with Heterogeneous Participation.” Western Journal of Agricultural Economics 10(2):344-353
Wossink, G. A. A. 1993, Analysis of Future Agricultrual Change, Wageningen Agricultural University.
Zalom, F. G., R. E. Ford, R. E. Frisbie, C. R. Edwards, J. P. Tette, 1992, “Integrated Pest Management: Addressing the Economic and Environmental Issues of Contemporary Agriculture.” In Food, Crop Pests, and the Environment: The Need and Potential for Biologically Intensive Integrated Pest Management, ed. F. G. Zalom and W. E. Fry, Ch. 1. St. Paul, Minn.: APS Press.
Zellner, A. 1962, “An Efficient Method of Estimating Seemingly Unrelated Regression and Tests for Aggregation Bias.” Journal of the American Statistical Association, 57:348-368.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔