(3.238.118.78) 您好!臺灣時間:2021/04/15 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林岳迪
研究生(外文):Yuehti Lin
論文名稱:時間區域法應用於培養基糖份量測之研究
論文名稱(外文):Study on Time Domain Reflectometer to measure the sugar concentrations of medium
指導教授:陳加忠陳加忠引用關係
指導教授(外文):Chiachung Chen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物產業機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:134
中文關鍵詞:組織培養時域反射探針設計糖份
外文關鍵詞:tissue cultureTDRprobe designsugar
相關次數:
  • 被引用被引用:4
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
植物組織培養是目前生物科技中最重要的產業之一,運用組織培養的技術可以使作物優良的品種繼續繁殖,以及改變其遺傳特性以篩選一些優良特性的突變種。在組織培養作業,培養基佔了很重要的角色。培養基內,糖是不可或缺的成分,是組織培養中碳源的主要來源。
本研究之目的在於探討運用時間區域反射儀(TDR)判定組織培養培養基中的糖濃度的可行性,用以監控植物在進行組織培養時,所消耗的糖分量來得到其生長期間每一階段對糖的需求量,用以建立植物進行組織培養時糖類的消耗曲線。
在研究中,設計出適用組織培養瓶之探針,並用此探針結合TDR來進行實驗。實驗結果顯示可量測蔗糖與葡萄糖在培養基中的濃度。且在相同條件之下,統計檢定顯示兩者並無顯著差異。在葡萄糖的不同濃度量測方面,由於整體曲線差異不是很顯著,因此取出量測波形中具代表性的一段進行迴歸分析,再找出其係數與濃度之相關性。並且結合溫度計算其經驗方程式,以從TDR訊號來推估培養基中的糖濃度。培養基在加入MS配方後,因為MS配方中有導電性高的離子,干擾了TDR介電度的量測。因此配方中MS配方的培養基中,並不適用此方法。

Plant tissue culture is one of important industry in the biotechnology. The application of plant tissue culture can breed the good plants and modifies some hereditary feature by sieving out some mutants of quality. In the tissue culture work adequate medium is very important. Sugar is important component in medium. It is the main source of carbon in the tissue culture plantlet.
The purpose of this study was to apply the time-domain reflectometer(TDR) technology to measure the sugar concentration in the tissue culture medium. The technology may be used to monitor the processing of tissue culture, that is, to obtain the sugar of consumption during growth stages. Then the consumption curve of sugar could be obtained in the culture of process.
In the study, a novel probe designed by researcher and combine with TDR was applied in the tissue culture vessel. The results of this study indicated that the concentrations of glucose and sucrose in the tissue culture medium could be measured. At the same terms, these curves between two kinds of sugar were not significant difference. The measurement of concentration of sugar that is not easy to for whole curves. One section of waveform was picked and treat by regression analyze technology. The correlations between concentration and regression coefficient were established. The experience equation to incorporate the temperature term was executed. So the TDR signal can be used to estimate concentration of sugar. As MS formula was added into medium, much ions of conductivity interference the dielectric of measurement. The TDR technique was inadequate to be applied to the medium with MS composition.

中文摘要--------------------------------------------------------------------------Ⅰ
英文摘要--------------------------------------------------------------------------Ⅱ
目錄--------------------------------------------------------------------------------Ⅲ
表目錄-----------------------------------------------------------------------------Ⅴ
圖目錄-----------------------------------------------------------------------------Ⅵ
第一章 序論----------------------------------------------------------------------1
1-1前言-------------------------------------------------------------------------1
1-2研究目的-------------------------------------------------------------------3
第二章 文獻探討----------------------------------------------------------------5
2-1植物組織培養-------------------------------------------------------------5
2-2培養基成分----------------------------------------------------------------7
2-3糖份在培養基中的角色--------------------------------------------------9
2-4組織培養瓶內微氣候---------------------------------------------------12
2-5 TDR基本原理-----------------------------------------------------------14
2-6電纜線中波的傳遞速率------------------------------------------------21
2-7 探針的構造--------------------------------------------------------------23
2-7.1探針型態-------------------------------------------------------------23
2-7.2探針的材料和長度-------------------------------------------------25
2-7.3桿的間隔和直徑----------------------------------------------------27
2-8 TDR在糖份量測之相關研究-----------------------------------------30
2-9量測不確定度------------------------------------------------------------32
第三章 材料與方法------------------------------------------------------------35
3-1實驗設備------------------------------------------------------------------35
3-1.1實驗儀器-------------------------------------------------------------35
3-1.2量測設備-------------------------------------------------------------36
3-2實驗材料------------------------------------------------------------------36
3-3實驗步驟與方法---------------------------------------------------------37
3-3.1培養基的製作-------------------------------------------------------37
3-3.2糖分校正方程式之建立-------------------------------------------38
3-4數據分析------------------------------------------------------------------39
第四章 結果與討論------------------------------------------------------------47
4-1試驗探針設計------------------------------------------------------------47
4-2糖種類之測定------------------------------------------------------------58
4-3不同濃度糖之測定------------------------------------------------------63
4-4溫度間之差異------------------------------------------------------------76
4-5 MS培養基之測定-------------------------------------------------------81
第五章 結論與建議------------------------------------------------------------87
5-1結論------------------------------------------------------------------------87
5-2建議------------------------------------------------------------------------89
第六章 參考文獻---------------------------------------------------------------91
附錄A 量測不確定度之評估-------------------------------------------------98
附錄B 統計分析--------------------------------------------------------------107
附錄C MS配方--------------------------------------------------------------113
附錄D 數據--------------------------------------------------------------------114
表目錄
表2-8.1不同種類糖在不同溫度下之介電係數----------------------------31
表3-1 各式型態探針之規格--------------------------------------------------40
表4-1.1探針波形之成對檢定整理表----------------------------------------56
表4-2.1不同種類糖波形之變方分析整理表-------------------------------62
表A-1 天平校正數據(10g)--------------------------------------------------103
表A-2 天平校正數據(100g)-------------------------------------------------103
表A-3 溫度校正數據---------------------------------------------------------104
表A-4 擷取代表段迴歸方程式之標準差--------------------------------105
表A-5 不確定度分項綜合列表--------------------------------------------106
表B-1 1號探針與2號探針一次微分波形之成對檢定----------------107
表B-2 1號探針與2號探針二次微分波形之成對檢定----------------107
表B-3 1號探針與3號探針一次微分波形之成對檢定----------------108
表B-4 1號探針與3號探針二次微分波形之成對檢定----------------108
表B-5 1號探針與4號探針一次微分波形之成對檢定----------------109
表B-6 1號探針與4號探針二次微分波形之成對檢定----------------109
表B-7 1號探針與6號探針一次微分波形之成對檢定----------------110
表B-8 1號探針與6號探針二次微分波形之成對檢定----------------110
表B-9 2%蔗糖與葡萄糖波形之變方分析---------------------------------111表B-10 4%蔗糖與葡萄糖波形之變方分析-------------------------------111
表B-11 6%蔗糖與葡萄糖波形之變方分析-------------------------------111
表B-12 8%蔗糖與葡萄糖波形之變方分析-------------------------------112
表B-13 10%蔗糖與葡萄糖波形之變方分析------------------------------112
表D-1 25℃不同葡萄糖濃度之波形(平均)-------------------------------114
表D-2 20℃不同葡萄糖濃度之波形(平均)-------------------------------119
表D-3 30℃不同葡萄糖濃度之波形(平均)-------------------------------124
表D-4 MS不同葡萄糖濃度之波形(25℃)---------------------------------129
圖目錄
圖1-1生物生長曲線與基質消耗曲線----------------------------------------4
圖2-3.1葡萄糖與蔗糖化學結構圖-------------------------------------------11
圖2-5.1 TDR設備之簡圖------------------------------------------------------18
圖2-5.2 TDR量測系統範例---------------------------------------------------18
圖2-5.3 TDR使用三金屬型態探針之波形---------------------------------19
圖2-5.4導電率之分析----------------------------------------------------------20
圖2-6.1標準探針構造圖-------------------------------------------------------29
圖2-6.2特殊探針構造圖-------------------------------------------------------29
圖2-8.1不同蔗糖濃度和溫度與介電度之關係----------------------------31
圖2-9.1常態分佈圖與準確度、精密度之關係-----------------------------34
圖3-1 1號探針之結構圖-------------------------------------------------------41
圖3-2 2號探針之結構圖-------------------------------------------------------42
圖3-3 3號探針之結構圖-------------------------------------------------------43
圖3-4 4號探針之結構圖-------------------------------------------------------44
圖3-5 5號探針之結構圖-------------------------------------------------------45
圖3-6 6號探針之結構圖-------------------------------------------------------46
圖4-1.1不同桿間距探針之原始波形----------------------------------------50
圖4-1.2不同桿間距探針波形一次微分波形圖----------------------------50
圖4-1.3不同桿間距探針波形二次微分波形圖----------------------------51
圖4-1.4不同桿直徑探針之原始波形----------------------------------------51
圖4-1.5不同桿直徑探針波形一次微分波形圖----------------------------52
圖4-1.6不同桿直徑探針波形二次微分波形圖----------------------------52
圖4-1.7不同桿形狀探針之原始波形----------------------------------------53
圖4-1.8不同桿形狀探針波形一次微分波形圖----------------------------53
圖4-1.9不同桿形狀探針波形二次微分波形圖----------------------------54
圖4-1.10不同桿長度探針之原始波形--------------------------------------54
圖4-1.11不同桿長度探針波形一次微分波形圖--------------------------55
圖4-1.12不同桿長度探針波形二次微分波形圖--------------------------55
圖4-1.13本試驗用探針--------------------------------------------------------57
圖4-2.1 蔗糖與葡萄糖濃度2%之波形-------------------------------------59
圖4-2.2 蔗糖與葡萄糖濃度4%之波形-------------------------------------59
圖4-2.3 蔗糖與葡萄糖濃度6%之波形-------------------------------------60
圖4-2.4 蔗糖與葡萄糖濃度8%之波形-------------------------------------60
圖4-2.5 蔗糖與葡萄糖濃度10%之波形------------------------------------61
圖4-2.6不同種類糖波形一次微分波形圖(4%)----------------------------61
圖4-2.7不同種類糖波形二次微分波形圖(4%)----------------------------62
圖4-3.1 不同葡萄糖濃度之波形(25℃)------------------------------------66
圖4-3.2 25℃不同葡萄糖濃度之波形(一)----------------------------------66
圖4-3.3 25℃不同葡萄糖濃度之波形(二)----------------------------------67
圖4-3.4 25℃不同葡萄糖濃度之波形(三)----------------------------------67
圖4-3.5 25℃不同葡萄糖濃度之波形(平均)-------------------------------68
圖4-3.6 20℃不同葡萄糖濃度之波形(一)----------------------------------68
圖4-3.7 20℃不同葡萄糖濃度之波形(二)----------------------------------69
圖4-3.8 20℃不同葡萄糖濃度之波形(三)----------------------------------69
圖4-3.9 20℃不同葡萄糖濃度之波形(平均)-------------------------------70
圖4-3.10 30℃不同葡萄糖濃度之波形(一)---------------------------------70
圖4-3.11 30℃不同葡萄糖濃度之波形(二)---------------------------------71
圖4-3.12 30℃不同葡萄糖濃度之波形(三)---------------------------------71
圖4-3.13 30℃不同葡萄糖濃度之波形(平均)------------------------------72
圖4-3.14 擷取段波形斜率與濃度之關係(25℃)--------------------------72
圖4-3.15 擷取段波形斜率平均值與濃度之關係(25℃)-----------------73
圖4-3.16 擷取段波形斜率與濃度之關係(20℃)--------------------------73
圖4-3.17 擷取段波形斜率平均值與濃度之關係(20℃)-----------------74
圖4-3.18 擷取段波形斜率與濃度之關係(30℃)--------------------------74
圖4-3.19 擷取段波形斜率平均值與濃度之關係(30℃)-----------------75
圖4-3.20 迴歸誤差原因示範圖----------------------------------------------75
圖4-4.1 不同溫度之波形(糖濃度0%)--------------------------------------78
圖4-4.2 不同溫度之波形(糖濃度3%)--------------------------------------78
圖4-4.3 不同溫度之波形(糖濃度5%)--------------------------------------79
圖4-4.4 不同溫度之波形(糖濃度8%)--------------------------------------79
圖4-4.5 不同溫度之波形(糖濃度10%)-------------------------------------80
圖4-5.1 MS培養基不同糖濃度之波形-------------------------------------83
圖4-5.2 MS培養基不同糖濃度波形一次微分波形圖-------------------83
圖4-5.3 MS培養基不同糖濃度波形二次微分波形圖-------------------84
圖4-5.4 MS培養基之迴歸殘差圖(糖濃度0%)----------------------------84
圖4-5.5 MS培養基之迴歸殘差圖(糖濃度3%)----------------------------85
圖4-5.6 MS培養基之迴歸殘差圖(糖濃度5%)----------------------------85
圖4-5.7 MS培養基之迴歸殘差圖(糖濃度8%)----------------------------86
圖4-5.8 MS培養基之迴歸殘差圖(糖濃度10%)---------------------------86
圖A-1 天平量測位置圖------------------------------------------------------102

朱欽昌。1989。蝴蝶蘭的播種與組織培養。洋蘭雜誌社。
林志平,周家榮。2001。時域反射儀在大地工程量測之應用。地工技術 83 pp53-62。
周家榮。2000。時域反射圓錐入器與孔內裝置之研發。國立交通大學土木工程學系碩士論文。
陳加忠。2000。植物組織培養生產自動化之技術開發。組織培養苗量產工程推廣手冊。陳加忠主編,pp1-7。台中:國立中興大學生物產業機電工程學系生物系統工程研究室。
陳加忠,林瑞松,陳駿季。1998。植物組織培養瓶內微氣候之連續性即時量測。農林學報 47:4 pp77-91。
許欣正。2002。光質對組培苗生長影響之研究。國立中興大學農業機械工程學研究所碩士論文。
黃慶文。2002。植物組織培養瓶換氣率與透光率之研究。國立中興大學農業機械工程學研究所碩士論文。
Amota. M., De Lorenzi, F., Olivieri. B.. 1993. Riflettometria nel dominio del tempo (TDR) per la misura dell’umidita volumetrica del terreno. I: Principi generali ed applicazioni. Riv. di Agronomia 27, pp1—8.
Amato, M., Ritchie, J.T., 1995. Small spatial scale soil water content measurement with time-domain reflectometry. Soil Sci. Soc. Am. J. 59, pp325—329.
Baker, T.H.W., Goodrich, L.E., 1987. Measurement of soil water content using the combined time-domain reflectometry ─ thermal conductivity probe. Can. Geotech. J. 24, pp160—163.
Baumgartner, N., Parkin, G.W., Elrick, D.E., 1994. Soil water content and potential measured by hollow time domain reflectometry probe. Soil Sci. Soc. Am. J. 58, pp 315—318.
Chen C and Chen J. 2002. Measurement of gas exchange rates in plant tissue culture vessels. Plant Cell, Tissue and Organ Culture 71. pp103-109.
Chen, C. Wu, P. 2001. Thin-layer Drying Model for Rough with High Moisture Content. J.agric.Engng Res.80(1).pp45-52.
Chen C. 2003. Development of a Heat Transfer Model for Plant Tissue Culture Vessels. Biosystems Engineering 85(1). pp67-77.
Dalton, F.N.Th., van Genuchten, M., 1986. The time-domain reflectometry method for measuring soil water content and salinity. Geoderma 38, pp237—250.
Davis, J.L., 1980. Electrical property measurements of sea ice in situ using a wide-band borehole radarand a time-domain reflectometer. Proc. Int. Workshop Remote Estimation Sea Ice Thickness, St.John’s, Newfoundland 80-5, pp155—187.
Fellner-Feldegg, H., 1969. The measurement of dielectrics in the time domain. J. Phys. Chem. 73, pp616—623.
Ferre, P.A., Redman, J.D., Rudolph, D.L., Kachanoski, R.G., 1998. The dependence of the electrical conductivity measured by time domain reflectometry on the water content of sand. Water Resour. Res. 34. pp1207-1213
Frederic, C., 1999. Measurement of suger content by multidimensional analysis and mid-infrared spectroscopy. Talanta 48 pp867-875.
Fonnesbech, M. 1972. Organic nutritions in the media for propagation of Cymbidium in vitro. Physiol. Planta. 27(3) pp360-364.
Fumio M. and Soichi Y. 1997. Rapid determination of glucose and sucrose by an amperometric glucose-sensing electrode combined with an invertase/mutarotase-attached measuring cell. Biosensor &Bioeletronics. Vol.12 No.9-10, pp.1013-1020
Giese, K. and Tiemann, R.,1975. Etermination of the complex permittivity from thin-sanple time domain reflectometry:Improved analysis of the step response wave form. Adv. Mol. Relax. Processes, Vol.7, pp45-59.
Heimovaara, T.J., 1993. Design of triple-wire time domain reflectometry probes in practice and theory. Soil Sci. Soc. Am. J. 57, pp.1410—1417.
Heimovaara,T.J. 1994. Practical and theoretical considerations for the design and application of triple-wire TDR probes. Soil Sci. Soc. Amer. J.
Hew.C.S, J.W.H Yong .1996. Recent Advances in Orchid Tissue Culture. pp288-322 Physiology of tropical orchids in relation to the industry. World Scientific. Singapore, New Jersey, London, Hong Kong.
Hippel, A. R. von. 1954. Dielectrics and Waves. John Wiley, New York.
ISO. 1995. Guide to the expression of uncertainty in measurement. Geneva.
Kachanoski, R.G., Pringle, E., Ward, A., 1992. Field measurement of solute travel times using timedomain reflectometry. Soil Sci. Soc. Am. J. 56, pp47—52.
Kachanoski, R.G., Pringle, E., Ward, A., 1993. Reply to ‘‘Comments on ‘Field measurement of solutetravel times using time domain reflectometry’’. Soil Sci. Soc. Am. J. 57, pp879.
Kelly, S.F., Selker, J.S., Green, J.L., 1995. Using short soil moisture probes with high-bandwidth time domain reflectometry measurements. Soil Sci. Soc. Am. J. 59,pp 97—102.
Knight, J.H., 1992. Sensitivity of time domain reflectometry measurements to lateral variations in soil water content. Water Resour. Res. 28, pp2345—2352.
Knudson, L. 1925. Physiological study of the symbiotic germination of orchid seeds. Bot. Gaz. 79: pp345-379.
Kraus, J.D., 1984. Electromagnetics, third ed. McGraw-Hill, New York.
Laure´n, A., 1997. Physical properties of the mor layer in a Scots pine stand. III. Thermal conductivity. Can. J. Soil Sci. 77, pp643—648.
Ledieu, J., De Ridder, P., De Clerck, P., Dautrebande, S., 1986. A method measuring soil water moisture by time-domain reflectometry. J. Hydrol. 88, pp319—328.
Maheshwarla, S.V., Venkatasubramanian, R., Boehm, R.F., 1995. Comparison of time domain reflectometry performance factors for several dielectric geometries: theory and experiments. Water Resour. Res. 31, pp1927—1933.
Malicki, M.A., Skierucha, W.M., 1989. A manually controlled TDR soil moisture meter operating with300 ps rise-time needle pulse. Irrig. Sci. 10, pp153—163.
Malicki, M.A., Plagge, R., Renger, M., Walczak, R.T., 1992. Application of time-domain reflectometry(TDR) soil moisture miniprobe for the determination of unsaturated soil water characteristics from undisturbed soil cores. Irrig. Sci. 13,pp 65—72.
Mudgett. R. E. 1987. Electrical properties of foods: a general review. In Physical properties of foods-2.COST 90bis.Elsevier, London, pp.159-170
Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacoo tissue culture. Physiol. Plant. 15:473-497.
Neto V. B. de P., W. C. Otoni. 2003. Carbo sources and their osmotic potential in plant tissue culture: dos it matter?. Scientia horticulturae 97: pp193-202.
Noborio, K. 2001. Measurement of soil water content and electrical conductivity by tine domain reflectometry: a review. Computer and Electronics in Agricultire 31 pp213-237.
Noborio, K., McInnes, K.J., Heilman, J.L., 1996. Measurements of soil water content, heat capacity, and thermal conductivity with a single TDR probe. Soil Sci. 161, pp22—28.
Patterson, D.E., Smith, M.W., 1985. Comment on ‘‘Monitoring the unfrozen water content of soil and snow using time domain reflectometry’’ by Jean Stein, Douglas L. Kane. Water Resour. Res. 21,
pp1055—1056.
Petersen, L.W., Thomsen, A., Moldrup, P., Jacobsen. O.H., Rolston, D.E., 1995. High-resolution time domain reflectometry: sensitivity dependency on probe-design. Soil Sci. 159. pp149-154.
Pierik, R.L.M. 1987. Preparation and composition of nutrient media. In Vitro culture of high plants. pp.45-82. Ed. R.L.M Pierik. Martinus Nijhoff Publishers, Dordecht.
Reeves, T.L., Elgezawi, S.M., 1992. Time domain reflectometry for measuring volumetric water content in processed oil shale waste. Water Resour. Res. 28, pp769—776.
Ren, T., Noborio, K., Horton, R., 1999. Measuring soil water content, electrical conductivity, and thermal properties with a thermo-time domain reflectometry probe. Soil Sci. Soc. Am. J. 63, pp450—457.
Schugerl, Karl. 2001. Progress in monitoring, modeling and control of bioprocesses during the last 20 years. Journal of Biotechnology 85 pp149-173.
Selker, J.S., Graff, L., Steenhuis, T., 1993. Noninvasive time domain reflectometry moisture measurement probe. Soil Sci. Soc. Am. J. 57, pp934—936.
Spaans, E.J.A., Baker, J.M., 1993. Simple baluns in parallel probes for time domain reflectometry. Soil Sci. Soc. Am. J. 57,pp 668—673.
Stein, J., Kane, D.L., 1983. Monitoring the unfrozen water content of soil and snow using time domain reflectometry. Water Resour. Res. 19, pp1573—1584.
Stein, J., Kane, D.L., 1985. Reply. Water Resour. Res. 21, 1057—1058.
Tektronix.,1990. 1502C Metallic Time-Domain Reflectometer 070-7169-05. p1-12. Beaverton USA.
Topp, G.C.. Davis. J. L. &Annan. A. P. 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Rwsources Res.,16. pp574-582.
Topp, G.C., Davis, J.L., Bailey, W.G., Zebchuk, W.D., 1984. The measurement of soil water contentusing a portable TDR hand probe. Can. J. Soil Sci. 64, pp313—321.
Topp, G.C., Davis, J.L., 1985a. Measurement of soil water content using time-domain reflectometry (TDR): a field evaluation. Soil Sci. Soc. Am. J. 49, pp19—24.
Topp, G.C., Davis, J.L., 1985b. Time-domain reflectometry (TDR) and its application to irrigation scheduling. In: Hillel, D. (Ed.), Advances in Irrigation, vol. 3. Academic Press, New York, pp.107—127.
Whalley, W.R., Leeds-Harrison, P.B., Joy, P., Hoefsloot, P., 1994. Time domain reflectometry and tensiometry combined in an integrated soil water monitoring system. J. Agric. Engng. Res. 59, pp141—144.
Wilko K.P , Pauline E.A.,Cornelius,Izaak A. 1995.Time-domain Reflectometry in Carbohydrate Solution. Journal of Food Engineering 26. pp319-328
Zegelin, S.J., White, I., Kenkins, D.J., 1989. Improved field probes for soil water content and electrical conductivity measurement using time domain reflectometry. Water Resour. Res. 25, pp2367—2376.
Zimmerman, R.H. 1995. Environmental effects and their control in plant tissue culture-review. ACTA Hort. 393:11-14.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔