(100.25.42.117) 您好!臺灣時間:2021/04/21 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何玫儀
研究生(外文):Mei-I Ho
論文名稱:序列相關資料的主成分分析法-以德基水庫水質監測數據為例
論文名稱(外文):Principal Components Analysis of Serially Correlated Data -the Monitored Water Data of Techi Reservoir as an example
指導教授:蔣國司
指導教授(外文):Kuo-Szu Chiang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:71
中文關鍵詞:主成分分析法線性混合模式限制最大概度法
外文關鍵詞:principal components analysislinear mixed modelrestricted maximum likelihood
相關次數:
  • 被引用被引用:19
  • 點閱點閱:753
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:150
  • 收藏至我的研究室書目清單書目收藏:0
  環境資料常會在同一地點測量一個以上的變數測值,多變量統計分析中的主成分分析(principal components analysis)是最常被用於縮減資料維度的方法,其做法是使用少數幾個變數的線性組合,來解釋原始數據大部分的變異。在使用主成分分析時,觀測值間應不具有顯著的相關性。然而,當資料是在同一地點被測量多次時,恐會影響主成分分析的結果。
  本文針對此一問題進行研究,首先透過模擬的方式,使用線性混合模式(linear mixed model)來配適數據,分別模擬出重複觀測值間具有四種相關結構(correlation structure)組合的數據:CS(compound symmetric)與CS,CS與獨立,AR(1)(first-order autoregressive)與AR(1),以及AR(1)與獨立,然後計算模擬數據之變異數成分(variance components)在不同相關結構組合、共變異數、觀測值個數和相關程度(指重複的觀測值間的相關程度)這四個因素下之偏差(bias)比值,並探討這四個因素的變動對其影響。另外,再以具有不偏(unbiased)特性的限制最大概度法(restricted maximum likelihood, REML)修正後的變異數-共變異數矩陣(variance-covariance matrix)為標準,來探討前述四個因素的變動對特徵值(eigenvalue)與特徵向量(eigenvector)之影響。
  最後以德基水庫水質監測數據為例,詳述數據重複觀測值間相關性之檢定、變異數-共變異數矩陣之修正、以及未經修正與修正在分析結果上之差異比較,並以圖形來詮釋修正後主成分分析的結果,提供一多變數序列相關(serially correlated)數據之主成分分析過程。
Environmental data are often involved with datasets that have more than one response variable for each experimental unit. For investigations involving a large number of observed variables, it is usually useful to simplify the analysis by considering a smaller number of linear combinations of the original response variables. The principal components analysis (PCA) is perhaps the best known dimension-reduction tool of multivariate analysis. The assumption of serially uncorrelated observations should be satisfied when one utilizes the PCA. However, when the data are measured several times at a location, they will be serially correlated. Under the circumstances, the results will be doubtful if PCA method is utilized.
In order to overcome the problem, first we utilized linear mixed model to fit the serially correlated data by simulation. There are four kinds of correlated structures: compound symmetric (CS) with CS, CS with independent, first-order autoregressive (AR(1)) with AR(1), and AR(1) with independent for the simulated datasets. The results were produced by calculating the biases of variance components in different correlated structures, covariance, the number of observations, and the correlated measure. Secondly, we employed the restricted maximum likelihood (REML) as the standard to investigate the change of the above four factors to the impacts of eigenvalues and eigenvectors.
Finally, we used the monitored water data of Techi reservoir as an example to go into detail about the correlated test of repeated observations, the revisal of variance-covariance matrix, and the comparison with the analysis result of revising or not. By the dataset, it provides a thoroughly detailed analysis of the PCA for multivariate serially correlated data.
摘要--------------------------------------------------------------------------------1
Abstract---------------------------------------------------------------------------3
第一章 緒論--------------------------------------------------------------------4
第一節 研究動機與目的-------------------------------------------------4
第二節 文獻回顧--------------------------------------------------------6
第二章 原理--------------------------------------------------------------------8
第一節 線性混合模式----------------------------------------------------8
第二節 主成分分析法----------------------------------------------------9
第三節 限制最大概度法------------------------------------------------10
第四節 Seasonal Kendall檢定法------------------------------------11
第三章 模擬研究------------------------------------------------------------14
第一節 數據之模擬------------------------------------------------------14
第二節 模擬研究步驟---------------------------------------------------16
第三節 模擬結果--------------------------------------------------------18
第四章 實例-德基水庫水質監測數據---------------------------------22
第一節 德基水庫水質監測數據---------------------------------------22
第二節 重複觀測值間相關性之判定---------------------------------22
第三節 主成分分析之結果--------------------------------------------23
第五章 結果與討論---------------------------------------------------------27
參考文獻------------------------------------------------------------------------29
附錄------------------------------------------------------------------------------62
附錄一:模擬數據之S-PLUS程式------------------------------------62
附錄二:求變異數成分限制最大概度法估計值之SAS程式-----62
附錄三:計算偏差比值之S-PLUS程式------------------------------63
附錄四:主成分分析之SAS程式--------------------------------------67
附錄五:Seasonal Kendall檢定之S-PLUS程式--------------------67
行政院環境保護署。1989。鳳山水庫優養之探討與模擬(二)。國立台灣大學土木工程研究所。22頁。
行政院環境保護署。1990。甘泉計畫(I)水庫水質維護大型計畫子計畫(五)水庫優養化對水質影響及水質處理研究(第一年)。國立台灣大學環境工程學研究所。1, 20頁。
陳育偉、張尊國。1995。應用多變量統計方法判識水庫優養化。臺灣水利。43(4):9-18。
張仁福。1993。環境科學概論。合記圖書出版社。305-306頁。
經濟部水資源局。2001。德基水庫集水區第四期整體治理計劃第四年(九十年度)水質監測與管理。國立中興大學水資源保育及防災研究中心。3-2頁。
蔡明昊。2002。德基水庫不同位址底泥、土壤與水質之關係。碩士論文。台中:國立中興大學土壤環境科學系。4頁。
Ahamad, B. 1967. An analysis of crimes by the method of principal components. Appl. stat. 16: 17-35.
Basilevsky, A. and D. P. J. Hum. 1979. Karhunen-Loève analysis of historical time series with an application to plantation births in Jamaica. J. Amer. statist. Assoc. 74: 284-290.
Galecki, A. T. 1994. General class of covariance structures for two or more repeated factors in longitudinal data analysis. Commun. statist. 23: 3105-3119.
Hasselman, K. 1988. PIPs and POPs: the reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res. 93: 11015-11021.
Hirsch, R. M., J. R. Slack, and R. A. Smith. 1982. Techniques of trend analysis for monthly water quality data. Water resour. res. 18(1): 107-121.
Hirsch, R. M. and J. R. Slack. 1984. A nonparametric trend test for seasonal data with serial dependence. Water resour. res. 20(6): 727-732.
Jiang, H. and K. M. Eskridge. 2000. Bias in principal components analysis due to correlated observations. In “Proc. 12th Kansas State University Conference”, Kansas, VA: Appl. stat. Assoc. pp. 148-160.
Johnson, R. A. and D. W. Wichern. 2002. Applied multivariate statistical analysis. New Jersey: Prentice Hall. pp. 61-62.
Kim, K. Y. and Q. Wu. 1999. A compariaon study of EOF techniques: analysis of nonstationary data with periodic statistics. J. Climate. 12: 185-199.
Littell, R. C., G. A. Milliken, W. W. Stroup and R. D. Wolfinger. 1996. SAS system for mixed models. Cary NC:SAS Institute Inc. pp. 94.
Mann, H. B. 1945. Non-parametric tests against trend. Econometrica. 13: 245-259.
McCulloch, C. E. and S. R. Searle. 2001. Generalized, linear, and mixed models. New York: John Wiley & Sons. pp. 225.
Patterson, H. D. and R. Thompson. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika. 58(3): 545-554.
Searle, S. R., G. Casella and C. E. McCulloch. 1992. Variance components. New York: John Wiley & Sons. pp. 382-383.
Walker, M. A. 1967. Some critical comments on “an analysis of crimes by the method of principal components” by B. Ahamad. Appl. stat. 16: 36-39.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔