(3.215.183.251) 您好!臺灣時間:2021/04/23 14:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林茂富
研究生(外文):Mao-Fu Lin
論文名稱:多速率光纖多波長分碼多工系統之可變長度展頻碼之設計
論文名稱(外文):Multiple-Length, Multiple-Wavelength Optical Orthogonal Codes for Optical CDMA Systems with Multirate Services
指導教授:楊谷章
指導教授(外文):Guu-Chang Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:40
中文關鍵詞:光纖分碼多工系統多波長光纖正交碼可變長度多影像質數碼跳頻分碼多工系統
外文關鍵詞:O-CDMAMultiple-wavelength optical orthogonal codemulti-lengthmultimediaprime codeFrequency-hopping code division multiple access
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文是由兩個部份組成:第一個部分是使用可變長度展頻碼之多波長光纖分碼多工系統。自相關與互相關最多為一的多波長光纖正交碼最近被提出來應用到波長─時域光纖分碼多工系統。此正交碼的基數值是波長數目的二次方程式。為了要支援不同速率和質素的多影像裝置,在這篇論文中我們代數地建構了新的自相關為零、互相關最多為一的可變波長、固定權重的多波長光纖正交碼。我們將分析這些新的碼在光纖分碼多工系統中應用於多影像裝置的效能。相對於傳統的單波長碼,我們的研究顯示出當碼長減少時,這些可變波長的碼在效能上會有所改善。而這獨特的特性是可以在光纖分碼多工系統中支援“優先處理性”的。
第二個部份要介紹的是使用質數碼的跳頻分碼多工系統。無線跳頻分碼多工系統被認知為是具有靈活性而且能支援多種裝置的無限多工技術之ㄧ。這個系統可以藉由給定與其他使用者不同的跳頻碼來允許多使用者共用相同的頻帶。在這篇論文中,首先我們先回顧一個利用質數碼具有良好互相關特性優點的跳頻分碼多工系統[19]。這個架構可以藉由使用質數碼序列的二次組合來提高資料速率。然而,在舊的分析中提到的並不夠精確。因此,我們從舊的分析中修正了一些方程式使分析更為準確。我們將比較新舊分析並將他們與模擬結果做比較。

The thesis consists of two parts: the first topic is O-CDMA with multi-length multiple-wavelength optical orthogonal codes. Multiple-wavelength optical orthogonal codes (MWOOCs) with autocorrelation sidelobes and cross-correlation values of both at most one were recently proposed for wavelength-time optical code-division multiple- access (O-CDMA) systems. Their cardinality is a quadratic function of the number of wavelengths. The codes find applications in high bit-rate optical CDMA systems with broadband supercontinuum lasers, in which the number of available wavelengths is larger than the number of time slots. To support multimedia services with different bit-rate and quality-of-service requirements, a new class of multiple-length, constant- weight, MWOOCs with autocorrelation sidelobes of zero and cross-correlations of at most one is constructed algebraically in this paper. The performance of these new codes in an O-CDMA system with double-media services is analyzed. In contrary to conve- ntional single-length codes, our study shows that the performance of these multiple- length codes improves as the code length decreases. This unique property supports ‘‘ prioritization’’ in O-CDMA.
The second topic is FH-CDMA with Prime Code. Frequency-hopping code division multiple access (FH-CDMA) wireless systems have been known as one of the wireless multiple access techniques, which can provide various services with flexibility. By assigning a distinct FH pattern to each other, the FH- CDMA wireless systems can allow multiple users to share the same frequency band simultaneously. In this thesis, we first review a FH-CDMA system [19], which utilizes the advantage of the good cross- correlation properties of prime code. By using the quadratic combinations of prime code sequences, the scheme can increase the data rate. However, the analysis reported in old one was not accurate enough. Therefore, we correct some equations from old analysis to make it more precise. We compare the old analysis with the new one and show that the results from the new old agree with the simulation results.

1 Introduction ………………………………………………………… 1
1.1 O-CDMA with Multi-length MWOOCs…………………………… 1
1.2 FH-CDMA with Prime Code……………………………………… 4
2 Constructions of Multiple-Length, Constant-Weight MWOOCs… 6
2.1 1-D Multiple-Length, Constant-Weight OOCs……………… 7
2.2 2-D Multiple-Length, Constant-Weight MWOOCs…………… 12
2.3 Correlation Properties……………………………………… 16
2.4 Cardinality……………………………………………………… 17
3 Performance Analysis…………………………………………. 20
4 FH-CDMA Wireless Communication System with Prime Code......28
4.1 System Description……………………………………………… 28
4.2 Performance Analysis…………………………………………… 30
4.3 Performance Comparison between Two Approaches………… 33
5 Conclusion……………………………………………………………… 35
5.1 O-CDMA with Multi-length MWOOCs…………………………… 35
5.2 FH-CDMA with Prime Code……………………………………… 35
Appendix A……………………………………………………………… 37
Reference……………………………………………………………………38

[1] L. Tanucevski and I. Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical LANs with increased security,” J. Lightwave Technol., vol. 14, no. 12, pp. 2636--2647, 1996.
[2] G.C. Yang and W.C. Kwong, “Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks,” IEEE Trans. Commun., vol. 45, no. 11, pp. 1426--1434, 1997.
[3] G.C. Yang and W.C. Kwong, Prime codes with applications to CDMA optical and wireless networks, Artech House, Boston, MA, 2002.
[4] S. Yegnanarayanan, A.S. Bhushan, and B. Jalali, “Fast wavelength-hopping time-
spreading encoding/decoding for optical CDMA,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 573--576, 2000.
[5] L.R. Chen, “Flexible fiber Bragg grating encoder/decoder for hybrid wavelength- time optical CDMA,” IEEE Photon. Technol. Lett., vol. 13, no. 11, pp. 1233--1235, 2001.
[6] Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA sys- tems,” J. Lightwave Technol., vol. 19, no. 9, pp. 1274--1281, 2001.
[7] R.M.H. Yim, L.R. Chen, and J. Bajcsy, “Design and performance of 2-D codes for wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 714--716, 2002.
[8] G.C. Yang and W.C. Kwong, “A new class of carrier-hopping code for code-division multiple-access optical and wireless systems,” IEEE Commun. Lett., vol. 8, no. 1, pp. 51--53, 2004.
[9] W.C. Kwong, G.C. Yang, V. Baby, C.-S. Bres, and P.R. Prucnal, “Multiple- wavel- ength optical orthogonal codes under prime-sequence permutation for optical CDMA,” submitted to IEEE Trans. Commun.
[10] F.R.K. Chung, J.A. Salehi, and V.K. Wei, “Optical orthogonal code: Design, analysis, and applications,” IEEE Trans. Info. Theory, vol. 35, pp. 595--604, 1989.
[11] G.C. Yang and T. Fuja, “Optical orthogonal codes with unequal auto- and cross- correlation constraints,” IEEE Trans. Info. Theory, vol. 41, no. 1, pp. 96--106, 1995.
[12] K.L. Deng, R.J. Runser, P. Toliver, I. Glesk, and P.R. Prucnal, “A highly-scalable, rapidly-reconfigurable, multicasting-capable, 100 Gb/s photonic switched intercon- nect based upon OTDM technology,” J. Lightwave Technol., vol. 18, no. 12, pp. 1892--1904, 2000.
[13] K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broade- ned supercontinuum spectrum generated in a dispersion decreasing fiber with convex dispersion profile, Electron. Lett. vol. 22, no. 21, pp. 1806--1808, 1997.
[14] G.C. Yang, S.Y. Lin, and W.C. Kwong, “MFSK/FH-SSMA wireless systems with double-media services over fading channels, IEEE Trans. Vehicular Technol., vol. 49, no. 3, pp. 900-910, 2000.
[15] W.C. Kwong and G.C. Yang, “Design of multilength optical orthogonal codes for optical code-division multiple-access multimedia networks,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1258-1265, 2002.
[16] C. Zhi, F. Pingzhi, and J. Fan, “Disjoint difference sets, difference triangle sets, and related codes, IEEE Trans. Inform. Theory, vol. 38, no. 2, pp. 518-522, 1992.
[17] M. Colbourn and C. Colbourn, “Recursive constructions for cyclic block designs,” J. Statistical Planning and Inference, vol. 10, pp. 97-103, 1984.
[18] M.Y. Azizoglu, J.A. Salehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1162-1170, 1992.
[19] G.C. Yang, and C.C Wang, “Design and Performance Analyses for Various FH- CDMA Wireless Communication systems,” Master thesis, Dept. of Electrical Engi- neering, National Chung Hsing University, July 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔