(18.207.129.82) 您好!臺灣時間:2021/04/19 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉明欣
研究生(外文):Ming-Hsin Liu
論文名稱:光電酬載控制導引無人飛機之控制
論文名稱(外文):Optical Tracking Control of an Unmanned Aerial Vehicle
指導教授:蔡清池
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:99
中文關鍵詞:光電酬載無人飛機
外文關鍵詞:optical payloadunmanned aerial vehicle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本論文主要目的在研究無人飛行載具追隨光電酬載位移變化之導引控制架構,將光電酬載所提供的方位角及俯仰角作為飛行控制系統的控制訊號,以協助對目標物搜尋或追蹤。本文首先敘述光電酬載的特性,利用輸出入迴授線性化的方法對其動態方程式作線性化,進一步討論穩定性與系統響應。無人飛行載具使用倒逆步飛行控制定律來維持良好的飛行姿態,比起傳統控制法則,倒逆步控制器更容易且簡單地實現。最後,兩種智慧型的控制策略被提出使得無人飛行載具在無遠端遙控員之支助下能以自動飛行機制來監控目標物。電腦模擬結果顯示飛行載具自動追隨光電酬載以保持目標物在攝影機的視角範圍內。
Abstract
This thesis presents a guiding-control framework for an unmanned aerial vehicle following the pen and tilt angles of an optical payload. An optical payload provides azimuth and pitch angles as control signals to assist for tracking or searching target. First, we briefly review the characteristics of an optical payload system, make use of input-output linearization method to linearize dynamic motion equation, and then explore the stability issues and system responses of the system. An unmanned aerial vehicle uses a backstepping flight control law in order to bestow good flying qualities for flight conditions. In comparison with convectional control methods, the backstepping controller is much simpler and easier to construct and implement. Finally, two intelligent strategies are proposed so that the target can be observed by an automatic flight maneuver without the help of a remote pilot. Simulation results have demonstrated that the aircraft automatically flies following the optical payload to keep target within the field of view of the camera.
Contents
Chinese Abstract i
English Abstract ii
Acknowledgments iii
Contents iv
List of Figures viii
List of Tables xii
CHAPTER 1 Introduction 1
1.1 Introduction 1
1.2 Survey of Related Research 3
1.3 Contributions of the Thesis 6
1.4 Organization of the Thesis 8
CHAPTER 2 Backstepping and PID Control of a Gimbal System 9
2.1 Introduction 9
2.2 Gimbal Architecture 10
2.3 Singularity and Mechanical Constraints 12
2.4 Gimbal Dynamic Equations 14
2.5 Gimbal Motion Control Design 16
2.5.1 Input-Output Linearization 18
2.5.2 Backstepping Control Design 19
2.5.3 PID Control Design 23
2.6 Gimbal System Implement Using TMS320C6711 DSK 26
2.6.1 DSK 6711 Functions Description 27
2.6.2 TMS320C6711 Digital Signal Processor 28
2.6.3 Code Composer Studio 29
2.6.4 Realizing the Gimbal System Based on DSKC6711 31
2.7 Concluding Remarks 37
CHAPTER 3 Design of Longitudinal Axis Full Envelope Control Law by Backstepping 38
3.1 Introduction 38
3.2 Aircraft System 40
3.2.1 Aircraft Coordinate System 40
3.2.2 Stability of Aircraft 42
3.2.3 Aircraft Dynamics Model 43
3.2.4 Flight Envelop of the Aircraft…………………………………………………. 43
3.3 Backstepping Control Design 45
3.3.1 Longitudianl Control 45
3.3.2 Simulation Results and Discussion 51
3.4 Eliminating Steady State Errors by Integral Actions 53
3.5 Concluding Remarks 57
CHAPTER 4 Design of Intelligent Flight Control Law Following the Optical Payload 59
4.1 Introduction 59
4.2 Aircraft/Payload Dynamics 61
4.2.1 Aircraft Dynamic Model 62
4.2.2 Gimbal Dynamic Model 63
4.2.3 Orientation of Coordinate Model 65
4.3 Intelligent Control Strategy 66
4.3.1 Fuzzy Logic Control 67
4.3.2 Pursuit Guidance 71
4.3.3 Simulation Results and Discussion 72
4.4 Fuzzy Flight Control 79
4.5 Concluding Remarks 83
Chapter 5 Summaries and Recommendations 85
5.1 Summaries 85
5.2 Recommendations 86
References 88
Appendix A 93
References
[1] W. Schick and I. Meyer, Luftwaffe Secret Projects: Fighters, 1939-1945
(Volume 1), ISBN 1857800524, August 1997
[2] UAV forum: http://www.uavforum.com/index.shtml
[3] W. Wagner, “Lightning Bugs and Other Reconnaissance Drones,” Armed
Forces Journal International, 1981.
[4] “Unmanned Vehicle Handbook 1997”, The Shephard’s Press, ISBN 1365-6546,
1996.
[5] Aerosonde: http://www.aa.washington.edu/research/aerosonde/laima.htm
[6] T. T. Trinh and J. K. Kuchar, “ Study of Visual Cues for Unmanned Aerial Vehicle Waypoint Allocation,’’ Proceedings of 1999 IEEE Digital Avionics Systems Conference.
[7] J. Korteling and W. Vanderborg, “ Partial Camera Automation in a Simulated Unmanned Air Vehicle,’’ Proceedings of 1997 IEEE Transactions on Systems, Man, and Cybernetics.
[8] P. Skoglar,“ Modellering and Control of IR/EO Gimbal for UAV Surveillance Applications,” Institution for systematic 581 83 LINKOPING”, June 2002.
[9] J.S. Shamma and M. Athans, “Analysis of Gain Scheduled Control for Nonlinear Plants,” IEEE Trans. on Automatic Control, vol 35, pp. 898-907, 1990.
[10] R.T. Reichert, “Dynamic Scheduling of Modern-Robust-Control Autopilot Designs for Missiles,” IEEE Control System Magazine, Vol. 12, No. 5, pp. 35-42, 1992.
[11] P.G. Gonsalves and G.L. Zachariisa, “Fuzzy Logic Gain Scheduling for Flight Control,” Proc. of 32rd IEEE Conf. on Fuzzy Systems, pp. 952-957, 1994.
[12] A. Fujimori, Z. Wu, P.N. Nikiforuk, and M.M. Gupta, “A Design of a Flight Control System using Fuzzy Gain-Scheduling,” Proc. of AIAA Guidance Navigation and Control Conf., AIAA-97-3760, 1997.
[13] R.C. Nelson, “Flight stability and automatic control,” McGraw-Hall, Inc., New York, 1998.
[14] O. Harkegard and T. Glad, “A Backstepping Design for Flight Flight Path Angle Control,” Proc. of the IEEE Conf. on Decision and Control, pp. 3570-3575, 2000.
[15] T. Lee and Y. Kim, “Nonlinear Adaptive Flight Control Using Backsteppingand Neural Networks Controller,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, pp.675-682, 2001.
[16] M. Sharma and D.G. Ward, “Flight-Path Angle Control via Neuro-Apaptive Backstepping,” AIAA Journal of Guidance, Control, and Dynamics, 2002.
[17] J.D. Blight, D. Gangsaas and T.M. Richardson, “Control Law Synthesis for an airplane with Relaxed Static Stability,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 9, No. 5, pp. 546-554, 1986.
[18] J. Roskam, “Airplane Flight Dynamics & Automatic Flight Control,” Kansas University Press, 1979.
[19] R.W. Pratt and P. Zarchan, “Flight Control System,” Reston VA, AIAA, 2000.
[20] M. Sharma, and A.J. Calise, “Adaptive Backstepping Control for a Class of Nonlinear Systems via Multilayered Neural Networks,” Proceedings of the American Control Conference, May 2002.
[21] J. Farrell, M. Sharma, M.. Polycarpou, “On-line Approximation Based Aircraft Longitudinal Control,” Proceedings of the American Control Conference, June 2003.
[22] C.C. Jorgensen, and C. Schley,“A neural Network Baseline Problem for Control of Aircraft Flare and Touchdown,”Neural Networks for Control, pp. 402-425, 1991.
[23] G. Schram, J. Iiff, A.J. Krijgsman, and H.B. Verbruggen, “Fuzzy Logic for Flight Control: A Straightforward MINO Design,” In Proceedings AIAA Guidance, Navigation, and Control Conference, AIAA-96-3847, 1996.
[24] G. Schram, B. Verschoor, J.M. Sousa, and H.B. Verbruggen, “Flight Control Reconfiguration Using Multiple Fuzzy Controllers,” Proceedings of the 6th IEEE International Conference, 1997
[25] A.J. Calise, and R.T. Rysdyk,“Nonlinear Adaptive Flight Control using Neural Networks,”IEEE Control Systems Magazine, vol. 18, no. 6, pp. 14-25, 1998.
[26] F. Austin, G.. Carbone, M. Falco and H. Hinz, “Game Theory for Automated Maneuvering During Air-Air Combat,” Journal of Guidance, Control, and Dynamics, Vol. 3, No. 6, p. 1143~1149, 1990.
[27] Y. Oshman, M. Isakow, “Mini-UAV Altitude Estimation Using an Iinertially Stabilized,” Aerospace and Electronic Systems, IEEE Transactions ,1999.
[28] Y. Sugpil Yoon, and J.B. Lundberg, “Equations of motion for a two-axes gimbal system,” IEEE Transactions on Aerospace and Electronic Systems, 2001
[29] P.J. Kennedy, and R.L. Kennedy, “Direct Versus Indirect Line of Sight (LOS) Stabilization,” IEEE Transactions on Control Systems Technology, 2003.
[30] R. M. Rogers, “Applied Mathematics In Integrated Navigation Systems,” AIAA Education Series, 2000.
[31] G. M. Sinouris, “Aerospace Avionics System,” Academic Press, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔