跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/03/01 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅吉志
研究生(外文):Ji-Jr Luo
論文名稱:掃描電容圖譜技術及其在鐵污染引致界面缺陷分析之應用
論文名稱(外文):Scanning capacitance spectroscopy and its application on the characterization of iron-contamination-induced interface defects
指導教授:貢中元貢中元引用關係張茂男
指導教授(外文):Chung-Yuan KungMao-Nan Chang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:66
中文關鍵詞:掃描電容顯微鏡掃描電容圖譜鐵污染界面缺陷
外文關鍵詞:scanning capacitance microscopyscanning capacitance spectroscopyiron contaminationinduced interface defect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
掃描電容顯微鏡技術已被廣泛應用於二維自由載子濃度分佈的量測,現已成為奈米檢測的利器之一。掃描電容顯微鏡雖然能提供二維微分電容影像,卻無法針對奈米元件做完整的電性分析。自掃描電容顯微鏡技術延伸而來的掃描電容圖譜,可進行探針定位並取得微分電容-電壓曲線,在奈米元件的檢測分析上極具潛力,利用掃描電容圖譜分析鐵污染引致界面缺陷便是一例。鐵是半導體製程中最常見到的污染物,鐵污染會降低矽基元件特性與其良率,瞭解鐵污染在半導體元件奈米區域所造成的影響是相當重要的課題。
本研究已成功建立掃描電容圖譜分析技術,並且利用該技術的高靈敏度來判別鐵污染引致界面缺陷的型態和數量。

Scanning capacitance microscopy (SCM) has been widely employed to measure the distribution of two-dimensional (2D) carrier concentration and has been a powerful tool for nano-characterization. However, SCM cannot provide the complete information on electrical properties of nano-devices, although SCM can produce 2D differential capacitance images. Scanning capacitance spectroscopy (SCS) extended from SCM allows us to position tip on an interested area and to acquire differential capacitance versus dc bias curves. For the characterization of nano-devices, SCS is a very powerful technique. For instance, we can study iron-contamination-induced interface defects by SCS. Iron is one of the commonly observed contaminants in semiconductor processes. Iron contamination can degrade silicon device’s performance and its yield. It is very important to realize the influence of iron contamination on nanometric area of semiconductor devices.
In this work, we have successfully developed SCS. With high sensitivity of SCS, we can distinguish the type of iron-contamination-induced interface defects and estimate the defect number.

目錄
摘要...........................................................i
Abstract......................................................ii
誌謝.........................................................iii
目錄..........................................................iv
圖目錄.......................................................vii
表目錄.........................................................x
符號說明......................................................xi
第一章 前言...................................................1
第二章 實驗原理...............................................5
2.1 鐵污染相關文獻探討.....................................5
2.2 原子力顯微鏡原理.......................................8
2.3 掃描電容顯微鏡原理....................................10
2.4 微分電容訊號與界面缺陷分析之關係......................13
第三章 實驗方法及步驟........................................15
3.1 鐵污染試片製備........................................15
3.1.1 晶片的選擇.......................................18
3.1.2 晶片的清洗.......................................18
3.1.3 硝酸鐵溶液配置與試片污染.........................19
3.1.4 試片熱氧化與熱退火處理...........................21
3.2 特性量測.............................................21
3.2.1 試片表面鐵污染濃度量測...........................21
3.2.2 表面粗糙度量測...................................23
3.2.3 微分電容訊號之變因...............................26
3.2.4 掃描電容圖譜與滯後效應...........................30
第四章 實驗結果與討論........................................33
4.1 表面鐵污染分佈量測...................................33
4.2 試片表面平坦度量測...................................34
4.3 微分電容影像與掃描電容圖譜之對應關係.................43
4.4 掃描電容圖譜分析技術量測.............................49
4.4.1 高低光擾之比較...................................49
4.4.2 高光擾模式與微分電容訊號之關係...................50
4.4.3 掃描電容圖譜穩定性測試...........................52
4.4.4 滯後效應量.......................................53
4.4.5 鐵污染引致界面缺陷計算...........................56
第五章 結論與建議............................................61
參考文獻......................................................63
附錄A 掃描電容顯微鏡D5000...................................66

1. P. S. D. Lin, R. B. Marcus, and T. T. Sheng, J. Electrochem.
Soc., 130, 1878 (1983).
2. P. F. Schmidt and C. W. pearce, J. Electrochem. Soc., 128,
630 (1981).
3. J. Wong-Leung, D. J. Eaglesham, J. Sapjeta, D. C. Jacobson,
J. M. Poate, and J. S.Williams, J. Appl. Phys., 83, 580
(1997).
4. M. Hourai, K. Murakami, T. Shigematsu, N. Fujino, and T.
Shiraiwa, Jpn. J. Appl. Phys., Part 1, 28, 2413 (1989).
5. M. Miyazaki, M. Sano, S. Sadamitsu, S. Sumita, N. Fujino,
and T. Shiraiwa, Jpn.J. Appl. Phys. Part 1, 28, L519 (1989).
6. N. Nakagiri, T. Yamamoto, H. Sugimura, and Y. Suzuki, J. Vac. Sci. Technol. B, 14, 887 (1996).
7. J. Isenbart, A. Bron, and R. Wiesendanger, Appl. Phys. A, 72
[Suppl.], S243 (2001).
8. J. J. Kopanski, J. F. Marchiando, and J. R. Lowney, J. Vac.
Sci. Technol. B, 14, 242 (1996).
9. C. C. Williams, W. P. HYough, and S. A. Rishton, Appl. Phys.
Lett., 55, 203 (1989).
10. C. C. Williams, J. Slinkman, W. P. Hough, and H. K.
Wickramasinghe, Appl. Phys. Lett., 55, 1662 (1989).
11. K. V. Smith, E. T. Yu, J. M. Redwing, and K. S. Boutros,
Appl. Phys. Lett., 75, 2250 (1999).
12. D. M. Schaadt, E. J. Miller, E. T. Yu, and J. M. Redwing,
Appl. Phys. Lett., 78, 88 (2001).
13. S. Sadamitsu, A. Sasaki, M. Hourai, S. Sumita, and N.
Fujino, Jpn. J. Appl. Phys., Part 1, 30, 1591 (1991).
14. M. N. Chang, C. Y. Chen, F. M. Pan, T. Y. Chang, and T. F.
Lei, Electrochemical and Solid-state Lett., 5, G69 (2002).
15. M. N. Chang, C. Y. Chen, F. M. Pan, B. W. Wu, and T. F.
Lei, Electrochemical and Solid-state Lett., 4, G69 (2001).
16. A. A. Istratov, H. Hieslmair, E. R. Weber, Appl. Phys. A,
70, 489, (2000).
17. L. jastrzebski, J. lagowski, W. Henley, P. Edelman, In Beam- Solid D. C. Jacobson, D. E. Luzzi, T. F. Heinz, M. Iwaki
(Mater. Res. Soc., Pittsburgh 1995)p. 405.
18. W. Bergholz, G. Zoth, F. Gelsdorf, B. Kolbesen, In Defects
in Silicon Ⅱ, ed. By W. M. Bullis, U. Gosele (The
Electrochem. Soc., Pennington 1991)p. 21.
19. A. L. P. Rotondaro, T. Q. Hurd, A. Kaniava, J.
Vanhellemont, E. Simoen, M. M. Heyns, and C. Claeys, J.
Electrochem. Soc., 143, 3014 (1996).
20. A. A. Istratov, H. Hieslmair, and E. R. Weber, Appl. Phys.
A: Mater. Sci. Process., 69, 13 (1999).
21.http://www.aquila.infn.it/infm/labinfm/infm_oth/attr/afm/dese
ng.html
22. M. Itsumi, Y. Sato, K. Imai, and N. Yabumoto, J. Appl.
Phys. 82, 3250 (1997).
23. M. N. Chang, C. Y. Chen, F. M. Pan, J.H. Lai, W. W. Wan,
and J. H. Liang, Appl. Phys. Lett., 82, 3955 (2003).
24. http://www.ntmdt.com

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top