(3.238.249.17) 您好!臺灣時間:2021/04/12 13:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴志憲
論文名稱:脈波調變電漿沉積氫化非晶矽薄膜之矽氫組態與多層膜結構研究
論文名稱(外文):Silicon to hydrogen bonding configurations and the multilayers investigate by pulse modulation plasma deposited hydrogenated amorphous silicon thin film
指導教授:江雨龍江雨龍引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:60
中文關鍵詞:脈波調變電漿技術RETA矽氫鍵結多層膜結構
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用脈波電漿調變技術,控制脈波產生器的RF-on time
,形成不同氫含量和矽氫鍵結結構的薄膜。RF-on time參數分別為30ms ~ 5ms,RF-off time 固定為30ms,在基板溫度100℃、150℃、200℃、SiH4/H2 : 1/4、沉積壓力0.75Torr、功率20W下沉積a-Si:H,經由FTIR光譜儀量測後,可以得到不同參數下對吸收峰值640 cm-1、845 cm-1、890 cm-1、2000 cm-1、2080 cm-1所造成的差異,以及薄膜內氫含量範圍由22.82%至13.52%,了解脈波調變電漿技術和基板溫度對矽氫鍵結組成的影響,再經由UV-VIS-NIR光譜儀和AFM原子力顯微鏡,可得到不同參數下薄膜折射率範圍由3.100 至 3.561,及表面粗糙度範圍由2.365nm 至 0.931nm。
利用快速熱回火技術可以讓薄膜內結構較鬆散的氫先被釋放,得知薄膜內SiH、SiH2、(SiH2)n組成比例,快速熱回火溫度由350℃到650℃經過2+5次、2+5+10次、2+5+10+15次,回火後可得到峰值面積下降百分比640 cm-1、2000 cm-1、2080 cm-1 結果顯示RF-on time越長與溫度越低,結構越鬆散,放氫越多,峰值面積下降百分比越大,RF-on time越短與溫度越高,結構越緻密,放氫越少,峰值面積下降百分比越少。
最後利用脈波調變電漿技術,控制脈波產生器的RF-on time /RF-off time,形成不同氫含量和折射率的薄膜。在利用電腦控制RF-on time/RF-off time和沉積時間,交替沈積製作a-Si:Hx/a-Si:Hy週期結構多層膜、再由XRD繞射光譜儀驗證a-Si:Hx/a-Si:Hy週期結構,是否有符合經由布拉格定律2dsinθ=nλ計算XRD繞射結果要出現的峰值角度。
This thesis uses pulse modulation plasma technology to control the RF-on time of the pulse generator and form the different films on the different hydrogen contents and different Si-H bonding configurations. The a-Si:H films are deposited under the process parameters mentioned after. The RF-on times are set from 30ms to 5ms, the RF-off time is fixed at 30ms. The substrate temperatures are at 100℃, 150℃, 200℃. The ratio of SiH4 to H2 is 1/4, deposition pressure is 0.75 Torr and RF power is 20W. After the measurements of FTIR spectrometer for the a-Si:H films on the different process recipes, we can understand the difference of absorption peaks on 640cm-1 peak, 845 cm-1、890 cm-1、2000 cm-1、2080 cm-1 and the hydrogen contents of films range between 22.82% and 13.52%. Therefore, we the effects of the pulse modulation plasma technology and the substrate temperatures on Si-H bonding configurations. In addition, we get the refractive indices from 3.100 to 3.561 and the surface roughness from 2.365nm to 0.931nm by the measurements and analyses of UV-VIS NIR spectrometer and AFM.
The loose hydrogen structure will be relaxed by using the RETA treatment, and we will analyze the component distribution of SiH、SiH2、(SiH2)n in the films. As the RETA temperatures are set from 350℃ to 650℃ and the annealing cycles are set (2+5) times,(2+5+10) times, and (2+5+10+15) times, we check the change of the area of peak on 640 cm-1、2000 cm-1、2080 cm-1 after RETA annealing. The results show that the structure is looser, the effusion of hydrogen increases, and area of peak decreases. As increasing RF-on time and decreasing the substrate temperature. In contrary, the structure is denser and, the effusion of hydrogen decreases, and area of peak increases. As decreasing RF-on time and increasing the substrate temperature.
Finally, we will form the films on different hydrogen contents and different refractive indices by controlling the ratio of RF-on time to RF-off time of pulse modulation plasma technology. After that, the periodic multi-layer films of alternate a-Si:Hx and a-Si:Hy are fabricated on modulating the RF-on time/RF-off time and deposition time by computer control systems. The periodic a-Si:Hx and a-Si:Hy configurations will be verified by XRD whether the angle of peak of XRD analysis fit the Bragg Law, 2dsinθ=nλ.
第一章、簡介…………………………………………………………
1. 1 文獻回顧…………………………………………………..
1. 2論文組織與架構……………………………………………
第二章、脈波調變電漿氫化非晶矽與量測………………………….
2. 1 氫化非晶矽薄膜的製作……………………………………
2. 1. 1 實驗設計……………………………………………
2. 1. 2 試片清洗與實驗流程……………………………….
2. 1. 2. 1 試片清洗…………………………………….
2. 1. 2. 2 實驗流程…………………………………….
2. 1. 3 不同脈波調變電漿之氫化非晶矽薄膜製作………..
2. 1. 4 不同基板溫度之氫化非晶矽薄膜製作……………...
2. 2 RETA (Rapid Energy Transfer Anneal) 快速能量傳輸回火…
2. 2. 1 快速能量傳輸回火系統………………………………
2. 2. 2 以快速能量傳輸回火之非晶矽薄膜………………….
2. 2. 3 回火參數……………………………………………….
2. 3 氫化非晶矽薄膜特性的量測與分析方法…………………….
2. 3. 1 薄膜厚度與折射率的分析……………………………..
2. 4 氫化非晶矽薄膜的矽氫鍵結和氫含量分析………………….
2. 4. 1傅立葉轉換紅外光譜儀(FTIR)………………………..
2. 4. 2 (SiH2)n與SiH3組成含量分析………………………….
2. 4. 3 微結構R參數(microstructure R ratio)…………….
2. 4. 4 氫含量計算……………………………………………
2. 5 AFM(Atomic Force Microscope)………………………………
第三章、氫化非晶矽多層膜……………………………………………
3. 1氫化非晶矽多層膜結構製作…………………………………
3. 1. 1 實驗設計………………………………………………
3. 1. 2 製作流程………………………………………………
3. 2 不同脈波調變電漿之氫化非晶矽多層膜結構………………
3. 3 不同基板溫度之氫化非晶矽多層膜結構……………………
3. 4 X-ray粉末繞射儀(X-ray Diffractometer)量測……………..
第四章、實驗結果與討論
4. 1不同脈波調變電漿與基板溫度之氫化非晶矽薄膜影響
4. 1. 1 矽氫鍵結分析
4. 1. 2 RF-on time對矽氫鍵結影響
4. 1. 3 基板溫度對矽氫鍵結影響
4. 2不同脈波調變電漿與基板溫度經RETA回火後對氫化非晶矽薄膜影響
4. 3薄膜表面粗糙度與光學特性
4. 3. 1 表面粗糙度
4. 3. 2 薄膜光學特性
4. 4 不同脈波調變電漿與基板溫度對氫化非晶矽多層膜結構影響
4. 4. 1 實驗設計
4. 4. 2 不同脈波調變電漿對氫化非晶矽多層膜結構影響
4. 4. 3 不同基板溫度對氫化非晶矽多層膜結構影響
第五章、結論
第六章、未來工作
[1]M. Vergnat, B. George, A. Bruson, G. Marchal, Ph. Mangin, and J. J. Demai, ” Evidence for amorphous multilayeredsilicon obtained by depositionunder modulated pressure of hydrogen”, J. Appl. Phys, Vol.64, 4536(1988)
[2]M. Vergnat, S. Houssaini, C. Dufour, A. Bruson, G. Marchai, and Ph. Mangin, “Evidance of hydrogen modulation in Si/Si:H amorphous multilayers “, phys. Rev. B, Vol. 40, 1418(1989)
[3]Song Tong, Xiang-na Liu, and Xi-mao Bao, “Study of photoluminescence in nanocrystalline silicon/amorphous silicon multilayers”, Appl. Phys. Lett, Vol.66, 469(1995)
[4]Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa, amd S.Ogi, ”Effects of low-frequency modulatuon on rf discharge chemical vapor deposition”,Appl. Phy. Lett. 53(14),1263(1988)
[5]L. J. Overzet and J. T. Verdeyen, “Enhancement of the plasma density and deposition ratio in rf discharges”, Appl. Phys. Lett.48 (11), 695(1986)
[6]A. Matsuda and K. Tanaka, “Investigation of the growth kinetics of glow-discharge hydrogenated amorphous silicon using a radical eparation technique”J. Appl. Phys. Vol. 60, 2351,(1986)
[7]M. H.Brodsky, Manuel Cardona, and J. J. Cuomo, “Infrared and Raman spectraof the silidcon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, Vol.16, 3556(1977)
[8]G. Lucokvky, R. J. Nemanich, and J. C. Knigfts “Structural interpretation of the vibrational spectra of a-Si:H alloys”Phys. Rev. B, Vol 19, 2064(1979)
[9]C. Manfredotti, F. Fizzotti, M. Boero, P. Pastorino, P. Polesello, and E. Vittone,”Influence of hydrogen-bonding configurations on the physical properties of hydrogenated amorphous silicon” Phys. Rev. B50,18046(1994)
[10]H. Touir, K. Zellama, and J.-F. Morhange, “Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities”, Phys. Rev. B, Vol. 59, 10076(1999)
[11]W. B. Pollard and G. Lucovsky, “Phonons in polysilane alloys”, Phys. Rev. B, Vol26, 3127(1982)
[12]C. Das, A. Dasgupta, S. C. Saha, and S. Ray,’ Effects of substrate temperature on structural properties of undoped silicon thin films ’ J. Appl. Phys. 91,9401(2002)
[13] L.S. Sidhu S. Zukotynski, ”Monohydride clusteringinthe amorphous silicon matrix”, Journl of Non-Crystalline Solids, Vol. 346, 65-72(1999)
[14] Shoji Furukawa, Nobuo Matsumoto, “Effects of polysilane fotmation on the opticaland electrical properties of binary Si:H alloys”, Phys. Rev. B, Vol. 31, 2114(1985)
[15] N.Souffi , M. Daouahi ,L. Chahed , K. Zellama , and P. Roca i Cabarrocas, “Effect of light soaking and annealing on the stability of hydrogenated amorphous silicon films deposited using pure and highly helium diluted silane”, Solid State Communications, Vol. 122, 259-264(2002)
[16]Y. K. Yang, J. S. Shin, R. G. Hsieh, and J. Y. Gan, ‘Film thickness reduction of thermally annealed hydrogenated amorphous silicon prepared with plasma-enhanced chemical vapor deposition ‘ Appl. Phys. Lett. 64, 1567(1994)
[17] R. Rüther, and J. Livingstone, “An infrared study of Si-H cluster formation in a-Si:H thon films”, Infrared Physics & Technology, Vol. 37, 533-537(1996)
[18] Shoji Furukawa, Nobuo Matsumoto, Takeshi Toriyama, and Norikuni Yabumoto, “Vibrational spectra of polysilane alloys”, J. Appl. Phys, Vol. 58, 4658(1985)
[19]Hae-Yeol Kim, Jae-Beom Choi, Jai-Young Lee, “Effect of silicon-hydrogen bond characteristics on the crystallization of hydrogenated amorphous silicon films prepared by plasma enhanced chemical vapor deposition ”, J. Vac. Sci. Technol. A, Vol. 17, 3240(1999)
[20] Jong-Hwan Yoon, “Correlation between the improvedstability and low temperature hydrogen effusion in hydrogenated amorphous silicon films grown from hydrogen dilution of silane ”, Solid State Communications, Vol. 124, 289-292(2002)
[21] Tetsua Sakka, Katsuya Toydda, and Matae Iwasaki, “Evolution of hydrogen from plasma-deposited amorphous hydrogenated silicon films prepared from a SiH4 /H2 mixture”, Appl. Phys. Lett, Vol. 55, 1068(1989)
[22]Y.L. Jiang.” Rapid Energy Transfer Annealing for the Crystallization of Amorphous Silicon”, Jpn. J. Appl. Phys. Vol.42(2003)
[23] A. A. Lngford, A. L.Fleet, B. P.Nelson, W. A. Lanford, N. Maley,”Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Phys. Rev. B, Vol. 45, 13367(1992)
[24] G. Lucovsky, J. Yang, S. S. Chao, J. E. Tuler, and W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphoussilicon-gydrogen alloy films”, Phys. Rev. B, Vol. 28, 3225(1983)
[25] K. Zellama, L. Chahed, P. Sládek, M. L. Thèye, J. H. von Bardeleben, and P. Roca i Cabarrocas,” Hydrogen-effusion-induced structural changes and defects in a-Si:H films: Dependence upon the film microstructure”,Phys. Rev. B, Vol. 53,3804(1996)
[26] Keiji Maeda, Atsushi Kuroe, and Ikurou Umezu, ”Mechanism of surface reaction in the deposition process of a-Si:H by rf glow discharge”,phys. Rev. B, Vol. 51,10635(1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔