(3.238.249.17) 您好!臺灣時間:2021/04/13 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐永勝
研究生(外文):Yung-Sheng Hsu
論文名稱:使用演化策略的多目標最佳化演算法
論文名稱(外文):Multiobjective Optimization Algorithm Using Evolution Strategies
指導教授:陳定宇陳定宇引用關係
指導教授(外文):Ting-Yu Chen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:150
中文關鍵詞:多目標最佳化演化式計算演化策略多目標最佳解遺傳演算法
外文關鍵詞:multiobjective optimizationevolutionary computationevolution strategyPareto optimalgenetic algorithm
相關次數:
  • 被引用被引用:5
  • 點閱點閱:413
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
為了克服傳統多目標最佳化方法的缺點,近年來多種基於演化式計算的多目標最佳化方法相繼被提出及改良,並廣泛的進行比較,在許多文獻中已證實這些設計方法的效率很高,可以快速得到多組最佳解。
本研究提出一種新的演化式方法來求解多目標最佳化問題,與其他方法相異之處在於本文方法是以基於排名與擁擠指標來指定適應值,與其他根據凌勝等級來指定的方式不同。本文選擇用演化策略ES方法作為演化法則,同時配合菁英保留和避免優越個體過度集中的技巧,以獲得大量既收斂又分佈均勻的多目標最佳解。本文方法除了可解無限制條件的問題外,亦可處理有限制條件的問題。
本研究對十數個包含有限制條件及無限制條件問題進行測試,並在部分問題上與其他方法作比較。測試結果顯示出本方法對大部分測試題目而言可以得到不錯的Pareto最佳解,但是也有一些缺點。本文除了探討可能的原因之外,亦提供了一些改進之建議。
In order to overcome the shortcomings of traditional multi-objective optimization(MO) methods, several new methods based on evolutionary computation(EC) have been designed and continually improved in these years. Through intensive tests and comparisons, these new methods have been proved to be able to provide high efficiency in producing MO solutions.
This paper trys to develop a new MO problem solver based on EC to solve MO problems. The main difference between proposed and other method is that the fitness is calculated based on rank and crowdness instead of domination level used by others. The evolution strategies(ES) is employed to be the tool to simulate the evolution process. Furthermore, both elitism strategy and anti-crowdness skill are used to get high-quality solutions which converge to Pareto front and are evenly distributed on the front. Both constrained and unconstrained MO problems can be solved by the proposed method.
The method will be tested against several MO problems including constrained and unconstrained ones. Comparison are made among three methods for some test problems. The results have shown that the proposed method can provide satisfactory Pareto solutions for most test problems, and some drawbacks are observed. The possible reasons behind these drawbacks are discussed and some recommendations are given for further research.
第一章 緒論
1.1 前言………………………….………………………………1
1.2 文獻回顧……………………………………………………2
1.3 研究目的與內容……………………………………………4
第二章 演化式計算方法
2.1 演化式計算簡介………………………………………6
2.2 遺傳演算法………………………………………………..16
2.3 演化策略法………………………………………………..20
2.4 GA與ES的比較………………………………………….27
第三章 演化式多目標最佳化演算法
3.1 多目標最佳化演化法則(MOEA)簡介………………..29
3.2 NSGA與NSGA-II………………………………………...36
3.3 SPEA與SPEA2…………………………………………...40
3.4 RNES……………………………………………………….46
3.5 其他方法…………………………………………………...52
第四章 無限制條件問題測試與比較
4.1 表現評估指標……………………………………………...53
4.2 文獻常用之測試題目……………..…………………...58
4.3 Zitzler特殊測試題目………………………………….…...70
第五章 RNES求解有限制條件問題與實例
5.1 簡介…………………………….…………………………102
5.2 測試題目…………………………………………………..104
5.3 應用實例………………………………………………….108
第六章 結論與展望
6.1 結論……………………………………………………….113
6.2 未來研究建議…………………………………………….119
參考文獻………………………………………………………………..121
附錄A 輪盤比例選擇法………………………………………….126
附錄B 常態分佈(Normal distribution)…………………………...128
附錄C Box plot說明……………………………………………..131
1. T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary computation: Comments on the history and current state,” IEEE Transactions on Evolutionary Computation, 1(1), pp. 3-17, 1997.
2. D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art,” Evolutionary Computation, 8(2), pp. 125-147, 2000.
3. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.
4. T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford University Press, September 1995.
5. E. Zitzler, M. Laumanns, and L. Thiele, ”SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization,” Evolutionary Methods for Design, Optimisation, and Control, CIMNE, Barcelona, Spain, pp. 95-100, 2002.
6. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA--II,” IEEE Transactions on Evolutionary Computation, 6(2), pp. 182-197, April 2002.
7. C. A. Coello and A. D. Christiansen, “Multiobjective Optimization of Trusses Using Genetic Algorithms,” Computers and Structures, 75, pp. 647-660, 2000.
8. K. Deb and S. Jain, Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms, KanGAL Report No. 2002001, February, 2002.
9. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, third edition, Springer-Verlag, 1996.
10. A. Brindle, Genetic algorithms for function optimization, Technical Report TR812, Department of Computer Science, University of Alberta, Edmonton, 1981.
11. J. E. Baker, “Reducing Bias and Inefficiency in the Selection Algorithm,” Proceedings of the 2nd International Conference on Genetic Algorithms, pp. 14-21, 1987.
12. T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation, Institute of Physics Publishing and Oxford University Press, 1997.
13. J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.
14. I. Rechenberg, Evolutionsstrategie: Optimierung technisher Systeme nach Prinzipien der biologischen Evolution, Frommann-Holzboog Verlag, Stuttgart, 1973.
15. H.-P. Schwefel, Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, volume 26 of Interdisciplinary systems research, Birkhauser, Basel, 1977.
16. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Chichester, U.K, 2001.
17. H.-P. Schwefel, Numerical Optimization of Computer Models, John Wiley & Sons Ltd, Chichester, U.K, 1977.
18. H.-P. Schwefel, “Collective phenomena in evolutionary systems,“ Problems of Constancy and Change - The Complementarity of Systems Approaches to Complexity, Budapest, 2, pp. 1025-1033, 1987.
19. T. Bäck, “The interaction of mutation rate, selection, and self-adaptation within a genetic algorithm,” Proceedings of the 2nd Parallel Problem Solving from Nature, Elsevier, pp. 85-94, 1992.
20. J. D. Schaffer, “Multi-objective optimization with vector evaluated genetic algorithms,” Proceedings 1st International Conference on Genetic Algorithms, pp. 93-100, 1985.
21. N. Srinivas and K. Deb, “Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms,” Evolutionary Computation, 2(3), pp. 221-248, Fall 1994.
22. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA--II,” IEEE Transactions on Evolutionary Computation, 6(2), pp. 182-197, April 2002.
23. E. Zitzler and L. Thiele, “Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach,” IEEE Transactions on Evolutionary Computation, 3(4), pp. 257-271, November 1999.
24. E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland, May 2001.
25. J. Horn, N. Nafpliotis, and D. E. Goldberg, “A Niched Pareto Genetic Algorithm for Multiobjective Optimization,” Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1994.
26. C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization,” Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers, pp. 416-423, 1993.
27. J. D. Knowles and D. W. Corne, “Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy,“ Evolutionary Computation, 8(2), pp. 149-172, 2000.
28. E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective Evolutionary Algorithms: Empirical Results,” Evolutionary Computation, 8(2), pp. 173-195, Summer 2000.
29. C. M. Fonseca and P. J. Fleming, “Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms-Part I: A Unified Formulation,” IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 28, pp. 38-47, 1998.
30. F. Kursawe, “A variant of evolution strategies for vector optimization,” Parallel Problem Solving from Nature, 1st Workshop, PPSN I, volume 496 of Lecture Notes in Computer Science, Berlin, Germany, Springer-Verlag, pp. 193-197, Oct 1991.
31. C. Poloni, “Hybrid GA for multi objective aerodynamic shape optimization,” Genetic Algorithms in Engineering and Computer Science (EUROGEN95). New York :Wiley, 1997.
32. R. Viennet, C. Fontiex, and I. Marc, “Multicriteria Optimization Using a Genetic Algorithm for Determining a Pareto Set, “ Journal of Systems Science, 27(2), pp. 255-260, 1996.
33. K. Deb, “Multi-objective genetic algorithms: Problem difficulties and construction of test problems,” Evolutionary Computation, 7(3), pp. 205-230, 1999.
34. A. Osyczka and S. Krenich, “A New Constraint Tournament Selection Method for Multicriteria Optimization using Genetic Algorithm,” 2000 Congress on Evolutionary Computation, Piscataway, New Jersey, IEEE Service Center, 1, pp. 501-507, July 2000.
35. A. Osyczka and S. Kundu, “A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm,” Structural Optimization, 10, pp. 94-99, 1995.
36. M. Tanaka, H. Watanabe, Y. Furukawa, and T. Tanino, “GA-Based Decision Support System for Multicriteria Optimization,” Proceedings of the International Conference on Systems, Man, and Cybernetics, Piscataway, NJ, IEEE, 2, pp. 1556-1561, 1995.
37. A. Osyczka, “Multicriteria optimization for engineering design,” Design Optimization, Academic Press, pp. 193-227, 1985.
38. R. Sarker, K. Liang, and C. Newton, “A New Evolutionary Algorithm for Multiobjective Optimization,” European Journal of Operational Research, 140(1), pp. 12-23, 2002.
39. M. Laumanns, G. Rudolph, and H.-P. Schwefel, “Mutation Control and Convergence in Evolutionary Multi-Objective Optimization,” Proceedings of the 7th International Mendel Conference on Soft Computing (MENDEL 2001), Brno University of Technology, Brno, Czech Republic, pp. 24-29, June 2001.
40. J. E. Fieldsend, R. M. Everson, and S. Singh, “Using Unconstrained Elite Archives for Multiobjective Optimization,” IEEE Transactions on Evolutionary Computation, 7(3), pp. 305-323, June 2003.
41. J. Knowles and D. Corne, “Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors,” IEEE Transactions on Evolutionary Computation, 7(2), pp. 100-116, April 2003.
42. H.-P. Schwefel, “Imitating evolution: Collective, two-level learning processes, Explaining Process and Change - Approaches to Evolutionary Economics,” Ann Arbor: The University of Michigan Press, pp. 49-63, 1992.
43. E. Zitzler, M. Laumanns, L. Thiele, C. M. Fonseca, and V. G. da Fonseca, “Why Quality Assessment Of Multiobjective Optimizers Is Difficult,” GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann Publishers, New York, pp. 666-674, July 2002.
44. K. Deb and A. Kumar, “Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems,” Complex Systems, 9(6), pp. 431-454, 1995.
45. K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Computer Science and Informatics, 26(4), pp. 30-45, 1996.
46. K. Deb and D. E. Goldberg, “An investigation of niche and species formation in genetic function optimization,” Proceedings of the Third International Conference on Genetic Algorithms, Washington DC, USA, pp. 42-50, 1989.
47. K. Deb and T. Goel, “Controlled elitist non-dominated sorting genetic algorithms for better convergence,” Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (EMO-2001), Zurich, Switzerland, pp. 67-81, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔