跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 16:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宗勳
研究生(外文):Tsung-Hsun Tsai
論文名稱:高深寬比微電鑄技術與複製過程研究
論文名稱(外文):Research of High Aspect Ratio Electroforming Technology and Replication Process
指導教授:簡 瑞 與楊 錫 杭
指導教授(外文):Reiyu CheinHsiharng Yang
學位類別:博士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:76
中文關鍵詞:高深寬比微結構微模仁離心力電流密度表面濃度壓力輔助式電鑄
外文關鍵詞:high-aspect-ratio microstructures (HARM)micromoldcentrifugal forcecurrent densitysurface concentrationair-pressure assistance electroforming
相關次數:
  • 被引用被引用:9
  • 點閱點閱:656
  • 評分評分:
  • 下載下載:169
  • 收藏至我的研究室書目清單書目收藏:1
文主要目的為探討LIGA製程高深寬比微結構電鑄製程。在高深寬比微電鑄遭遇的三個主要困難點是鍍液的填充、陰極表面離子濃度的快速消耗以及電鑄時產生結構鑄孔的缺失。本文針對上述的三個問題加以探討。首先以數學模式探討離心力對液體填充高深寬比微模仁細管之影嚮。在高轉速作用下,親水性及疏水性模仁表面皆能有效率完成液體填充過程。其次為以理論模式探討高深寬比微結構電鑄的濃度分佈,計算高深寬比微電鑄過程中電流密度與陰極表面濃度之關係。電流密度與高深寬比是影嚮微電鑄結果的二個重要因素。由定電流的微電鑄實驗,開始電鑄的電壓變化到電壓達穩定的時間與數學計算之濃度分佈達到穩態的時間非常吻合,同時此穩態的情形可以維持到電鑄過程之結束,又高深寬比的電鑄使用太大的電流密度,陰極表面金屬離子濃度變成稀薄,造成鑄層不穩定而中斷,此在微電鑄的實驗亦可以得到印證。最後為建立一個全新的壓力輔助式之電鑄實驗槽並探討其相關理論,由理論的分析顯示壓力輔助式之電鑄可增加離子擴散係數及降低鍍液的表面張力,這二個正面的效應促使高深寬比微結構電鑄的成功。由實驗的操作結果發現壓力輔助式之電鑄對氫氣鑄孔或是附著之汽泡的消除非常有效,再者可以增加可允許施用之電流密度,同時對結晶型態、硬度方面亦有明顯改善。基於上述的這些正面效應,應用此一新的微電鑄製程技術於半徑85μm高深寬比HAR=12微鎳圓柱陣列結構之實現。

The major goal of this study is to investigate the high-aspect-ratio electroforming technique. Three fundamental difficulties are encountered in the microstructure electroforming: electrolyte filling, fast ion consumption rate, and poor structure strength. The strategies for solving these three problems are reported in this study. First, the influence of centrifugal force and surface tension on the fluid filling processes in high-aspect-ratio micromold is addressed. Under certain high rotation speed of the filling system, efficient filling can be attained regardless surface is hydrophilic or hydrophobic. Second, a theoretical model that predicts the metal ion concentration distribution during electroforming high aspect ratio microstructures (HARM) is built. The applied current density and microstructure aspect ratio were found as two important factors that affect the electroforming outcome. The analytical results are verified using electroforming microstructural posts experiments. Good agreement was obtained between the experimental and analytical solutions. Third, a new microelectroforming technique using air-pressure assistance in the electrolyte is developed. The related theories show that ion diffusivity can be increased and surface tension can be reduced by increasing the bulk electrolyte pressure. These two positive effects can help to obtain successful outcomes on high aspect ratio microstructure electroforming. The pressurized electrolyte reduces hydrogen bubble formation and defect on the substrate surface. The experimental results show that the metallurgical grains were finer when higher pressures were applied in the electrolyte based on SEM micrographs. Moreover, pressurized electroforming can increase the allowable current density which can shorten plating time in the LIGA process. The surface morphology of pressurized electroformed samples and hardness were improved compared with the conventional method. Based on these positive effects, Ni post arrays microstructures with HAR=12 in 85μm diameter is realized by using pressurized electroforming.

第一章-緒論……………………………………………………………..1
1.1 簡介…………………………………………………………...1
1.2 研究目的……………………………………………………...4
1.3 本文組織…………………………………………………...…5
第二章-離心力填充高深寬比微結構計算…………….……………….7
2.1 簡介……………………………………………………..…….7
2.2 數學模式………………………………………………..…...10
2.3 結果與討論……………………………………………….…14
2.4 結論……………………………………………………….…22
第三章-高深寬比微結構電鑄濃度分佈計算與實驗…………………23
3.1 簡介……..……….……………………………………..……23
3.2 數學模式與實驗…………..………………………..…….…25
3.2.1 理論分析……………………………………………..25
3.2.2 理論模式於電鑄過程之應用………………………..26
3.2.3 主要參數之計算…..…………………………………29
3.2.4 電鑄實驗……………………………………………..30
3.3 結果與討論…………...……………………………………..31
3.3.1 數學計算………..……………………………………31
3.3.2電鑄結果探討………………………………………...36
3.3.2.1定電流電鑄之電壓變化……………………...36
3.3.2.2沉積率計算…………………………………...37
3.4 結論…..……………………………………………………...38
第四章-壓力輔助式之電鑄製程研究…………………………………39
4.1 簡介……………………………………………………….…39
4.2 相關理論………………………………………………….…40
4.2.1 壓力對溶液擴散係數之影嚮………………………..42
4.2.2 壓力對溶液電雙層之影嚮…………………………..43
4.2.3 壓力對溶液表面張力之影嚮………………………..45
4.3 壓力輔助式之電鑄槽設計與建立………………………….46
4.4 鍍液與操作之條件……………………………………….....49
4.5 鍍件之準備……………………………………………….…49
4.6 壓力輔助式之電鑄操作程序……………………………….50
4.7 結果與討論……………………………………………….…51
4.7.1 壓力對平面電鑄缺陷形成之影嚮…………………..51
4.7.2 壓力對電鑄時使用電流密度之影嚮………………..53
4.7.3 壓力對平面電鑄表面結晶型態之影嚮……………..56
4.7.4 壓力對電鑄表面硬度之影嚮………………………..60
4.7.5 壓力輔助式之高深寬比微結構電鑄………………..61
4.8 結論………………………………………………………….63
第五章-壓力輔助式之高深寬比微圓柱陣列電鑄……………………64
5.1 簡介……………………………………………………….....64
5.2 微圓柱陣列電鑄模仁PMMA之製作……………………...66
5.3 結果與討論…………….…………………………………....69
5.3.1 受壓力作用之平面電鑄……………………………..69
5.3.2 受壓力作用之高深寬比微圓柱陣列電鑄…………..70
5.4 結論………………………………………………..…...……72
第六章-結論與建議……………………………………………………73
6.1 結論………………………………………………………….73
6.2 建議………………………………………………………….75

1.Becker, E. W., Ehrfeld, W., Hagmann, P., Maner, A., and Munchmeyer, D., “Fabrication of Microstructures with High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming and Plastic Moulding (LIGA Process),” Microelectron Eng., 4, 35-56, 1986.
2.Lowenhein, F. A., Modern Electroplating, 2nd ed., John Wiley &Sons, Inc., New York, 1963.
3.Bauer, W., Ritzhaupt-Kleissl, H. J., Hausselt, J. H., “Slip Casting of Ceramic Microcomponents,” Microsystem Technol., 4, 125-127, 1998.
4.Marc Madou, Fundamentals of Microfabrication, CRC., New York, chap.6 ,1997.
5.Brannon, J., “Excimer Laser Ablation and Etching,” IEEE Circuits and Devices, March, 11-18, 1997.
6.楊啟榮,強玲英,黃奇聲. 微系統LIGA製程之精密電鑄技術,科儀新知,第21卷第6期,15-27, 2000.
7.Yang, H., Pan, C. T., Chou M. C., “Ultra-fine Machining Tool/Molds by LIGA Technology,”Journal of Micromechanics and Microengineering, 11(2), 94-99, 2001.
8.Bacher, W., Menz, W., Mohr, J., “The LIGA Technique and its Potential for Microsystems,”IEEE Trans. Ind. Electr., 42(5), 431-441,1995.
9.Kondo, R., Takimoto, S., Suzuki, K., Suguyama, S., “High Aspect Ratio Electrostatic Micro Actuators using LIGA Process,” Microsystem Technol., 6, 218-221, 2000.
10.Yen, et al. Proc. of Chinese Material Science Annual Symposium (in Chinese), 2000.
11.Kim, E., Xia, Y., and Whitesides G. M., “Polymer Microstructures Formed by Moulding in Capillaries,”Nature, 376, 581-584, 1995.
12.Kim, E., Whitesides, G. W., “Imbibition and Flow of Wetting Liquids in Noncircular Capillaries,”J. Phys. Chem., 101, 855-863, 1997.
13.Erickson, D., Li, D., and Park, C. B., “Numerical Simulations of Capillary-Driven Flows in Nonuniform Cross-Sectional Capillaries,”J. Colloid Interface Sci., 250, 422-430, 2002.
14.Staples, T. L., Shaffer, D. G., “Wicking Flow in Irregular Capillaries. Colloids and Surfaces,”A: Physicochemical and Engineering Aspects, 204, 239-250, 2002.
15.Kim, D. S., Lee, K. C., Kwon, T. H., and Lee, S. S, “Micro-Channel Filling Flow Considering Surface Tension Effect”J. Mechmech. Microeng., 12, 236-246, 2002.
16.Tso, C. P., Sundaravadivelu, K., “Capillary Flow between Parallel Plates in the Presence of Electro Magnetic Field,”J. Phys. D: Appl. Phys., 34, 3522-3527, 2001.
17.Yao, D., Kim, B., “Simulation of the Filling Process in Microchannels for Polymeric Materials,”J. Micromech. Microeng., 12, 604-610, 2002.
18.Manz, A., Graber, N., and Widmer, H. M., “Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing,”Sensors and Actuators B:, 244-248, 1990.
19.Tseng, F. G., et al. “Fluid Filling into Microfabricated Reservoirs,” Sensor and Actuators A ,97-98, 131-138, 2002.
20.Lehmann, G. L., Driscoll, T., Guydosh, N. R., Li, P. C., and Cotts, E. J., “Underflows Process for Direct-Chip-Attachment Packaging,”IEEE Trans. On Components, Packaging, and Manufacturing Tech., Part A, 21, 266-274, 1998.
21.Tuckerman, D. B., Pease, R. F. W., “High Performance Heat Sink for VLSI,”IEEE Electron Devices Lett., 2, 126-129, 1981.
22.Nishida, Y., Ohira, G., “Modeling of Infiltration of Molten Metal in Fibrous Perform by Centrifugal Force,”Acta Mater., 47, 841-852, 1999.
23.Bird, R. B., Stewart, W. E., Lightfoot, E. N., Transport phenomena 2nd ed., John Wiely and Sons, Inc., 2002.
24.Zhmud, B. V., Tiberg F., and Hallstensson K., “Dynamics of Capillary Rise,”J. Colloid Interface Sci., 228, 263-269, 2000.
25.Menz, W., Mohr, J., Paul, O., Microsystem Technology, Wiley-Vch., 2001.
26.Epelboin, I., Wiart, R., “Mechanism of the Electrocrystallization of Nickel and Cobalt in Acidic Solution,”J. Electrochem. Soc., 113(10), 1577-1582, 1971.
27.Dukovic, J. O., “Feature-Scale Simulation of Resist-Patterned Electrodeposition,” IBM J. Res. Develop, 37(2), 125-141, 1993.
28.Kondo, K., Fukui, K., Uno, K., Shinahara, K., “Shape Evolution of Electrodeposited Copper Bumps,“ J. Electrochem. Soc., 143(6), 1880-1886, 1996.
29.Yung, E. K., Romankiw, L. T., and Alkire, R. C., “Plating of Copper into Through-Holes and Vias,”J. Electrochem. Soc., 136(1), 206-215, 1989.
30.謝淵清編著, 電化學反應程序,徐氏基金會出版,1983.
31.Hill, J. M., Dewynne, J. N., Heat Conduction-Applied Mathematics and Engineering Science Texts, 1987.
32.Moore, W. J.,原著, 黃麗鵬,林基興譯, 基礎物理化學, 曉園出版社,第15-16章, 1988.
33.Dickerson, R. E., Gray, H. B., Haight, G. P., Chemical Principles. 1973.
34.Wei, Z. J., Wang, Y. Y., Wan, C. C., Huang, C. H., “Study of Wetters in Nickel Electroforming of 3-D Microstructures,”Materials Chemistry and Physics, 63, 235-239, 2000.
35.Amblard, J., Epelboin, I., Froment, M., Maurin, G., “Inhibition and Nickel Electrocrystallization,”J. of Applied Electrochem., 9, 233-242, 1979.
36.Rice, O. K., “The Effect of Pressure on Surface Tension,”Journal of Chemical Physics, 15(5), 333-335, 1947.
37.Silberberg, M., Chemistry, Mosby-Year Book, Inc.,1996.
38.Owen, B. B., Miller, R. C., Milner, C. E., and Cogan, H. L., “The Dielectric Constant of Water As a Function of Temperature and Pressure,”Journal of Physical Chemistry, 65, 2065-2070, 1961.
39.Dunn, L. A., Stokes, R. H., “Pressure and Temperature Dependence of the Electrical Permittivities of Formamide and Water,” Transaction of Faraday Society, 65, 2906-2912, 1969.
40.Potter, E. C., Electrochemistry, Cleaver-Hume Press Ltd.,1970.
41.Onsager, L., Fuoss, R. M., “Irreversible Process in Electrolytess,” Journal of Physical Chemistry, 36, 2689-2700, 1932.
42.Hamann, S. D., “Electrolyte Solutions at High Pressure,”Modern Aspects of Electrocchemistry, Chap.2, 47-158, 1974.
43.Rieger, P. H., Electrochemistry, Prentice-Hall, Inc.1988.
44.Slowinski, E., Gates, E. E., Waring, C. E., “The Effect of Pressure on the Surface Tensions of Liquids,”Journal of Phys. Chem., 61, 808-813, 1957.
45.Kupka, R. K., Bouamrane, F., Cremers, C., and Megtert, S., “Microfabrication: LIGA-X and Applications,”Applied Surface Science, 64, 97-110, 2000.
46.Christophe, M., Yohannes, M. D., James R., Michael, C. M., and Kevin, K., “Fabrication of High-Aspect-Ratio Microstructures on Planar and Nonplanar Surfaces using a Modified LIGA Process,” Journal of Microelectromechanical systems, 6(4), 329-336, 1997.
47.Bejan, A., Morega, A. M., “Optimal Arrays of Pin Fins and Plate Fins in Laminar Forced Convection,”ASME Journal of Heat Transfer, 115, 75-81, 1993.
48.Xiaoqing, Y., Bau, H. H., “Micro Heat Exchangers Consisting of Pin Arrays,”Transactions of the ASME, Journal of Electronic Packaging, 119, 51-57, 1997.
49.Huang, H., Wang, W., Murphy, M. C., “Microfabrication of High Aspect Ratio Bi-Te Alloy Microposts and Applications in Micro-Sized Cooling Probes,”Microsystem Technologies, l6, 1-5, 1999.
50.Liu, R. H., Vasile, M. J., and Beebe, D. J., “The Fabrication of Nonplanar Spin-On Glass Microstructures,”Journal of Microelectromechanical systems, 8(2), 146-151, 1999.
51.Ehrfeld, W., Rinhaus, R., Münchmeyer, D., and Strathmann H., “Microfabrication of Membranes with Extreme Porosity and Uniform Pore Size,” Journal of Membrane Science, 36, 67-77, 1988.
52.Ehrfeld, W., “The LIGA Process for Microsystems,”Proceedings. Micro System Technologies ’90, Berlin., 521-528, 1990.
53.Samper, V. D., Sangster, A. J., Wallrabe, U., Reuben, R. L., and Grund, J. K., “Advanced LIGA Technology for the Integration of an Electrostatically Controlled Bearing in a Wobble Micromotor,” Journal of Microelectromechanical systems, 7(4), 423-427, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top