(3.215.183.251) 您好!臺灣時間:2021/04/23 14:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳維毅
研究生(外文):Tan Wei Yee
論文名稱:微流道流體混合之對流擴散效應分析與實驗
論文名稱(外文):Analysis and Experiment of Fluid Diffusion-Convection and Mixing Intensity in a Microchannel
指導教授:陳志敏陳志敏引用關係
指導教授(外文):Jerry Min, Chen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:74
中文關鍵詞:微流道擴散長度擴散係數
外文關鍵詞:microchanneldiffusion lengthdiffusion coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:1
本研究針對不同寬深比的微流道之流體混合現象建立理論模式與模擬分析,並透過實驗來驗證。我們利用頻譜方法(Spectral method)將濃度統御方程式(species transport equation)展開作數值模擬,得到流體在微流道的速度和濃度分佈。數值模擬結果提供進一步針對微流道中混合過程參數的探討,其中包括流體的平均速度、擴散係數、微流道的寬深比以及混合區域等關係。在實驗方面,本研究以流場可視化方法為主,採用微機電系統中的微製造技術來製作微流體晶片,作為流場觀察兩種流體混合的元件設備。流道寬度皆為500μm,搭配不同的蝕刻深度100.3、56. 7和26.6μm。混合效率是採用原本無色的兩種液體,作用時會產生深紅色,以顏色深淺的比率作為混合指標。透過理論分析,可以得到混合效率和參數的對數關係圖,並比較實驗的結果估算出流體的擴散係數。此外,藉由數值模擬結果得知,擴散長度(δ)和混合效率皆可做為混合現象的指標。

This study presents the numerical simulations and experiments of fluid mixing in a microchannel with different aspect ratios. The convection-diffusion equation for species concentration is analyzed using the spectral method for a three-dimensional microchannel. The simulation results include the velocity profile, mixing intensity and the concentration distribution of the microchannel. Effects of the mixing process are primarily controlled by the parameters including the average velocity of the flow, diffusion coefficient, the aspect ratio and the location of mixing region. For the experiments, the micromachining technique was used to fabricate the microchannel of different aspect ratios with silicon wafer. The channels have the same width b=500μm but different depths h=100.3, 56.7, and 26.6μm. Glass was bonded on the wafer surface for flow visualization. The mixing efficiency is estimated by using pH dye in the indicator stream, as the two colorless fluids changed to red color during the mixing process. Based on the theoretical model, the diffusion coefficient of the working fluids has been evaluated. In addition, both the average mixing intensity and the diffusion length can be used as an index of mixing phenomenon.

摘要 I
Abstract II
Contents III
Figure Contents V
Table Contents VII
Nomenclature VIII
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Literature Review 2
1.3 Purpose 5
1.4 The structure of this thesis 6
Chapter 2 Formulation and Analysis 7
2.1 Theoretical Modeling 7
2.2 Numerical Method 11
2.3 Numerical Results 16
Chapter 3 Measurement and Results 38
3.1 Framework of Measurement 38
3.1.1 Flow visualization 38
3.1.2 Fluidics 39
3.1.3 Microfluidic Chip 40
3.1.4 Work-stage 40
3.2 Microfluidic Device Fabrication 41
3.2.1 Oxidation of Silicon 43
3.2.2 Photolithography Process 43
3.2.3 KOH Wet Etching 44
3.2.4 Anodic Bonding 46
3.3 Quantification and Analysis Method 48
3.4 Results of Quantification 50
Chapter 4 Discussion and Conclusion 64
4.1 Data analysis 64
4.2 Conclusion 68
References 70

References
Anderson, R. C., Bogdan, G. J., Barniv, Z., Dawes, T. D., Winkler, J., and Roy, K., “Microfluidic Biochemical Analysis System,” Proceedings of International Conference on Solid-State Sensors and Actuators, Chicago, Vol. 1, 1997, pp. 477-480.
Beebe, D. J., Trumbull, J. D., and Glasgow, I. K., “Microfluidics and Bioanalysis Systems: Issues and Examples,” Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology, Chicago, Vol. 20, 1998, pp. 1692-1697.
Biran, A., and Breiner, M., MATLAB 5 for Engineers, Addison-Wesley, London, 1999.
Blankenstein, G., and Larsen, U. D., “Modular Concept of a Laboratory on a Chip for Chemical and Biochemical Analysis,” Biosensors & Bioelectronics, Vol. 13, 1998, pp. 427-438.
Branebjerg, J., Gravesen, P., Krog, J. P., and Nielsen, C. R., “Fast Mixing by Lamination,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), San Diego, CA, 1996, pp. 441-446.
Brody, J. P., and Yager, P., “Diffusion-based Extraction in a Microfabricated Device,” Sensors and Actuators, Vol. 58, 1997, pp. 13-18.
Brody, J. P., Yager, P., Goldstein, R. E., and Austin, R. H., “Biotechnology at Low Reynolds Numbers,” Biophysical Journal, Vol. 71, 1996, pp. 3430-3411.
Caldin, E. F., Fast Reactions in Solution, Addison-Wesley, London, 1964, pp. 66-67.
Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.
Chiem, N., Colyer, C., and Harrison, D. J., “Microfluidic Systems for Clinical Diagnostics,” Proceedings of International Conference on Solid-State Sensors and Actuators, Chicago, Vol. 1, 1997, pp. 183-186.
Deval, J., Tabeling, P., and Ho, C.-M., “A Dielectrophoretic Chaotic Mixer,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, 2002, pp. 36-39.
Gobby, D., Angeli, P., and Gavriilidis, A., “Mixing Chacteristics of T-type Microfluidic Mixers,” Journal of Micromechanics and Microengineering, Vol. 11, 2001, pp. 126-132.
Hanneborg, A., “Silicon Wafer Bonding Techniques for Assembly of Micromechanical Elements,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Nara, Japan, 1991, pp. 92-98.
Hsu, T.-R., MEMS & Microsystems Design and Manufacture, McGraw-Hill, New York, 2002.
Ismagilov, R. F., Strook, A. D., Kenis, P. J. A., and Whitesides, G., “Experimental and Theoretical Scaling Laws for Transverse Diffusive Broadening in Two-Phase Laminar Flows in Microchannels,” Applied Physics Letters, Vol. 76, 2000, pp. 2376-2378.
Kamholz, A. E., and Yager, P., “Theoretical Analysis of Molecular Diffusion in Pressure-Driven Laminar Flow in Microfluidic Channels,” Biophysical Journal, Vol. 80, 2001, pp. 155-160.
Kamholz, A. E., Schilling, E. A., and Yager, P., “Optical Measurement of Transverse Molecular Diffusion in a Microchannel,” Biophysical Journal, Vol. 80, 2001, pp. 1967-1972.
Kamholz, A. E., Weigl, B. H., Finalyson, B. A., and Yager, P., “Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-sensor,” Analytical Chemistry, Vol. 71, 1999, pp. 5340-5347.
Khandurina, J., and Guttman, A., “Bioanalysis in Microfluidic Devices,” Journal of Chromatograph A, Vol. 943, 2002, pp. 159-183.
Lee, Y.-K., Deval, J., Tabeling, P., and Ho, C.-M., “Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Interlaken, Switzerland, 2001, pp. 483-486.
Lide, D. R., CRC Handbook of chemistry and Physics, CRC Press, Boca, Raton, 1994.
Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., “Passive Mixing in a Three-Dimensional Serpentine Microchannel,” Journal of Microelectromechanical Systems, Vol. 9, 2000, pp. 190-197.
Meinhart, C., Wang, D., and Turner, K., “Measurement of Ac Electrokinetic Flows,” The 10th International Symposium on Flow Visualization, Kyoto, Japan, 2002, F0451.
Miyake, R., Lammerink, T. S. J., Elwenspoek, M., and Fluitman, J. H. J., “Micro Mixer with Fast Diffusion,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Fort Lauderdale, FL, 1993, pp. 248-253.
Ottino, J. M., The Kinematics of Mixing Stretching, Chaos and Transport, Cambridge University Press, New York, 1989.
Senturia, S. D., Microsystem Design, Kluwer Academic, Norwell, MA, 2001.
Schmidt, M. A., “Wafer-to-wafer Bonding for Microstructure Formation,” Proceedings of the IEEE, Vol. 86, 1998, pp. 1575-1585.
Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M. “Chaotic Mixer for Microchannels,” Science, Vol. 295, 2002, pp. 647-651.
Suzuki, H., and Ho, C.-M., “A Magnetic Force Driven Chaotic Micro-Mixer,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, 2002, pp. 40-43.
Tong, Q.-Y. and Gösele, U., Semiconductor Wafer Bonding: Science and Technology, John Wiley & Sons, New York, 1999.
Trefethen, L., Spectral methods in Matlab, SIAM, Philadelphia, 2000.
Vivek, V., Zeng, Y., and Kim, E. S., “Novel Acoustic-Wave Micromixer,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Miyazaki, Japan, 2000, pp. 668-673.
Wang, K.-C., Chyou, C.-K., and Hung, C.-I., “Design and Flow Simulation of a New Type Micromixer,” Proceeding of the 19th National Conference on Mechanical Engineering, Yunlin, Taiwan, 2002.
White, F. M., Viscous Fluid Flow, McGraw-Hill, New York, 1974, pp.110-240.
Yang, Z., Goto, H., Matsumoto, M., and Maeda, R., “Ultrasonic Micromixer for Microfluidic Systems,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Miyazaki, Japan, 2000, pp. 80-85.
Zant, P. V., Microchip Fabrication: A Practical Guide to Semiconductor Processing, 4th edition, McGraw-Hill, New York, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔