(18.232.55.103) 您好!臺灣時間:2021/04/23 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李峰政
研究生(外文):Feng-Zheng Lee
論文名稱:MinimumLP-Norm相位展開技術應用於電子斑點干涉術之研究
指導教授:黃敏睿
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:94
中文關鍵詞:電子斑點干涉術條紋對比之提昇相位展開技術區塊接合
外文關鍵詞:ESPIEnhancing the Contrast of Correlation fringeMinimum LP-Norm Phase Unwrapping
相關次數:
  • 被引用被引用:5
  • 點閱點閱:410
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
自電子斑點干涉術(ESPI)發展以來,已經在精密量測技術中嶄露頭角,但其影像後處理技術仍待提昇。本論文參照學長賀子能先生所提之正規化處理技巧(normalization skill),利用三角函數和差化積之運算,消除因雷射光強照射不均所導致斑點相關條紋對比不佳的情況。學生更進一步利用和差化積消除相關條紋高頻項雜訊,使對比更加清晰,如此可省去一般對相關條紋圖濾波所帶來之誤差,經由實驗結果印證,相關條紋對比確實明顯提昇許多。文中也論及過去幾位研究者所提之條紋對比提昇方法,進而與本文所提之方法做比較,驗證本文所提之方法其效果較佳且適應性較傳統濾波方法來得良好。
相位展開技術在後處理過程中更是重要的一環。尤其當處理對象為具有高雜訊,如電子斑點干涉術所得之結果,則相位展開技術必須要更為強健才能展開正確。經過本實驗室多年來的研究,對於高雜訊所造成的不連續現象(inconsistency)已有能力克服之;但對於原始相位本身就存在的不連續現象(例如:剪切平面),基本上比雜訊所造成的不連續現象更加不容易執行相位展開之程序。本論文以Dennis C. Ghiglia和Louis A. Romero在1996年所發表的Minimum LP-Norm Phase Unwrapping為基礎,針對原始相位本身就存在的不連續現象加以克服,並對此相位展開法之缺點,提出『區塊接合』理論,進而改善運算效率且提昇對雜訊之免疫能力。
Electronic speckle pattern interferometry (ESPI) has been used to elucidate the in-plane and out-of-plane displacements of an object. It is a method for measuring the deformation or displacement of the surface of an object by recording at least two speckle patterns, one before and one after the object is deformed. By adding, subtracting or multiplying the speckle patterns, correlation fringe patterns with poor signal to noise ratios are obtained. In general, the contrast of the correlation fringe patterns is enhanced using digital filter methods. However, digital filter methods cannot remove the speckle noise efficiently and sometimes leads to inaccurate digital filtering when the noise is intense. This thesis is based on Zi-Neng He’s thesis (in 2001) and further cooperated with several fringe and image analysis methods to enable the achievement of correlation fringes with excellent contrast. He’s thesis is based on a trigonometric operation to adjust and unify the intensities of all pixels of an interferogram (and is termed as normalization by him.) His method differed from most digital filter methods. An intercomparison of them shows that normalization method outperforms digital filtering method.
In addition, this thesis studies the phase unwrapping technology for ESPI maps with physical shear. In 1996, Dennis C. Ghiglia and Louis A. Romero published the minimum LP-norm 2-D phase unwrapping algorithm to restore the phase surface with real shear. It is unfortunate that the solution could fall if the solution has many local minima. Some of the local minima could be close to an actual global minimum and could thereby yield a solution that is useful for the application at hand. This unfortunate circumstance stems, in part, from the fact that there is no unique global minimum for L0-norm problem. This differs from the uniquely solvable L2-norm problem. Convergence to a local minimum is guaranteed; convergence to a global minimum is not. This disadvantage makes it difficult to analysis the wrapped phase map in ESPI and to obtain the phase distribution correctly. Hence, I propose an innovative method based on the submap-stitching rule and the branch-cut algorithm to circumvent the aforementioned main drawbacks. The computational simulations and experimental implementations of the thesis show the effectiveness of the proposed method.
中文摘要 Ⅰ
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
第一章 緒論 01
1-1 研究動機與研究方向 01
1-2 論文大綱 04
第二章 電子斑點干涉術理論及其相關條紋圖對比提昇技術 05
2-1 實驗架設與原理 05
2-2 相移干涉術之簡介 12
2-3 條紋對比提昇技術之文獻回顧 13
2-4 正規化處理 18
2-5 影像消高頻 22
2-6 濾波與二值化 24
第三章 Minimum LP-Norm相位展開技術及其性能探討 27
3-1 相位展開技術之回顧 27
3-1.1 相位展開技術之基本分類 31
3-1.2 路徑相依型相位展開技術 32
3-1.3 路徑獨立型相位展開技術 34
3-1.4 相位展開過程所遭遇之問題 41
3-2 Minimum LP-Norm相位展開法基本原理 44
3-2.1 連續相位分布之數學式推導 46
3-2.2 不連續相位分布之數學式推導 48
3-3 最小平方相位展開法 51
3-4 加權最小平方相位展開法 53
3-4.1 數學表示式 53
3-4.2 Gauss-Seidel Relaxation Method 56
3-4.3 Picard Iteration Method 56
3-4.4 Preconditioned Conjugate Gradient Method 57
3-5 Minimum L0-Norm相位展開法 60
3-6 Minimum L0-Norm相位展開法性能測試 62
第四章 Minimum L0-Norm結合分支切割及接合技術
之相位展開法及其性能探討 67
第五章 結論與未來展望 88
參考文獻 90
[1] A. Twitto, J. Shamir, A. Bekker and A. Notea, “Detection of internal defect using phase shifting holographic interferometry,” NDT&E Intl. 29(3), 163-173 (1996).
[2] O. J. Lobberg, “Recent developments in video speckle interferometry,” Speckle Metrology, R. S. Sirohi, ed. (Marcel Dekker, New York, 1993) 157-194.
[3] K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053-3058 (1985).
[4] L. C. Granam, “Synthetic interferomtry radar for topographic mapping,” Proc. IEEE 62, 763-768 (1974).
[5] Towers D. P., Judge T. R. and Bryanston-Cross P. J., “Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI,” Optics and Laser in Engineering 14, 239-281 (1991).
[6] J. N. Butters and J. A. Leendertz, “Holographic and video techniques applied to engineering measurement,” Journal of Measurement and Control 4, 349-354 (1971).
[7] Y. M. He, C. J. Tay and H. M. Shang, “A new method for generating and analyzing digital speckle shearing correlation fringe patterns,” Optics and Lasers Technology, 30, 27-31 (1998).
[8] P. Hariharan, B. F. Oreb, and T. Eijux, “Digital phase-shift interferometry:a simple error-compensating phase calculation
algorithm,” Appl. Opt. 26, 2504 (1987).
[9] N. A. Ochoa, F. Mendoza Santoyo, A. J. Moore, C. and Perez Lopez, “Contrast enhancement of electronic speckle pattern interferometry addition fringes,” Appl. Optics 36, 2783 (1997).
[10] N. A. Ochoa, J. L. Marroquin, and Abundio Davila, “Phase recovery using a twin-pulsed addition fringe pattern in ESPI,” Optics Communications 163, 15-19 (1999).
[11] N. A. Ochoa, F. Mendoza Santoyo, C. Perez Lopez, and Bernardino Barrientos, “Multiplicative electronic speckle-pattern interferometry fringes,” Appl. Opt. 39, 5138 (2000).
[12] M. J. Huang, Zi-Nehg He, Feng-Zheng Lee, “A novel methodology for enhancing the contrast of correlation fringes obtained by ESPI,” Measurement 36(1), 93-100 (2004).
[13] R. Cusack, J. M. Huntley and H. T. Goldgrein, ”Improved noise immune phase unwrapping algorithm,” Appl. Opt. 34, 781-789 (1995).
[14] D.C. Ghiglia, M.D. Pritt, “Two-dimensional Phase Unwrapping Theory,” Algorithms and Software, Wiley, New York (1998).
[15] J. M. Huntley and H. Huntley, “Temporal phase-unwrapping
algorithm for automated interferometry analysis,” Appl. Opt. 32(17), 3047-3052 (1993).
[16] H. O. Salder and J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt. 36(13), 2770-2775 (1997).
[17] W. W. Macy, “Two-dimensional fringe-pattern analysis,” Appl. Opt. 22, 3898-3901 (1983).
[18] R. M. Goldstein, H. A. Zebker and C. L. Werner, “Satellite radar
interferometry : Two-dimensional phase unwrapping,” Radio Science 23(4), 713-720 (1988).
[19] N. H. Ching, D. Rosenfeld and M. Braun, “Two-dimensional phase unwrapping using a minimum spanning tree algorithm,” IEEE 1(3), 355-361 (1992).
[20] T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A 14(10), 2692-2701(1997).
[21] D. C. Ghiglia, G. A. Mastin and L. A. Romero, “Cellular-automata
method for phase unwrapping,” J. Opt. Soc. Am. A 4, 276-280 (1987).
[22] M. J. Huang, Cian-Jhih Lai, “Innovative phase unwrapping algorithm: hybrid approach,” Opt. Eng. 41(6) (2002).
[23] M. J. Huang, Zi-Neng He, “Phase unwrapping through region-refernced algorithm and window-patching method,” Opt. Comm. 203, 225-241 (2002).
[24] Dennis C. Ghiglia and Louis A. Romero, “Minimum LP-Norm two-dimensional phase unwrapping,” J. Opt. Soc. Am. A 13 (1996).
[25] 賀子能,「電子斑點干涉術於微小變形之量測及其影像後處理之研究」,國立中興大學機械研究所碩士論文,2001。
[26] 黃一玄,「修正分支切割相位還原法並應用於電子斑點干涉術」,國立中興大學機械研究所碩士論文,2002。
[27] 陳森案,「相位重建之影像處理技術應用於光學量測之研究」,國立中興大學機械研究所碩士論文,2002。
[28] 周文彬,「平行性區域型相位展開技術應用於雷射光學量測之研究」,國立中興大學機械研究所碩士論文,2003。
[29] 饒松青,「雜訊免疫型相位展開技術研究及電子斑點干涉條紋圖分析應用」,國立中興大學機械研究所碩士論文,2003。
[30] G. B. Arfken and H. J. Weber, “Mathematical Methods for Physicists,” 4th ed. (Academic, San Diego, 1995), Chap. 17.
[31] G. M. Ewing, “Calculus of Variations with Applications,” (Dover, New York, 1985).
[32] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in C: The Art of Scientific Computing,” 2nd ed. (University of Cambridge Press, Cambridge, 1992), 864.
[33] Dennis C. Ghiglia and Louis A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 13 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔