(18.207.129.82) 您好!臺灣時間:2021/04/19 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張原銘
研究生(外文):Chang Yuan Ming
論文名稱:二氧化矽及氮化矽薄膜機械性質之量測
論文名稱(外文):Measurements of mechanical properties of silicon dioxide and silicon rich nitride thin film
指導教授:黃敏睿
指導教授(外文):M. J. Huang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:68
中文關鍵詞:薄膜殘留應力楊氏係數
外文關鍵詞:thin filmresidual stressYoung''s modulus
相關次數:
  • 被引用被引用:2
  • 點閱點閱:2029
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:160
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
半導體製程和微機電系統中,二氧化矽和氮化矽是極為重要的薄膜材料,本論文應用一種簡單、有效率的量測方法,以奈米壓痕機(nanoindentation)試驗測試二氧化矽和氮化矽薄膜的楊氏係數,可在短時間內測得的薄膜的楊氏係數,經實驗測試結果,二氧化矽和氮化矽的楊氏係數分別為等於90.9 和142 。另外,本論文利用整體微細加工技術(bulk micromachining)將二氧化矽(silicon dioxide)及低應力之氮化矽(silicon rich nitride),此兩種薄膜材料製作成懸臂樑結構,由其結構所產生的殘留變形量,推估薄膜之殘留應力,推導之結果,二氧化矽及低應力氮化矽薄膜之殘留應力分別為約 -129.9 及59.1 ;本論文在推導薄膜之殘留應力過程中,所應用之公式皆為一般材料力學中之基本公式,並未使用艱澀難懂的方程式;而實驗使用之懸臂樑亦是由一般的積體電路(IC)製程所製作而成,亦無複雜或特殊之製作程序,此為本篇論文特色之一。
Abstract
Silicon dioxide and silicon nitride are very important thin-film materials for the semiconductor industry and Micro-Electronic-Mechanical-system (MEMS). This dissertation investigates a simple and effective measurement, which is nanoindentation,to test the Young’s modulus of two materials. The experimental results show the Young’s modulus of silicon dioxide and silicon nitride are 90.9 Gpa and 142 Gpa respectively. In addition, we fabricated cantilever beams of silicon dioxide and silicon rich nitride by the bulk micromachining to estimate the residual stress of this structure from its deformation. The residual stress of silicon dioxide and silicon rich nitride thin film are —129.9 Mpa and 59.1 Mpa, respectively. All applied equations of dissertation are the fundamental formulas from mechanics of materials, and the experimental samples, cantilever beams, are fabricated by general integrated circuit (IC) process, too. The characters of the method are easy and effective to obtain the mechanical property of thin film.
目錄
第一章 緒論 1
1-1 前言 1
1-2研究動機 2
第二章 薄膜殘留應力基本理論 3
2-1 薄膜 3
2-2 薄膜形成之方式 3
2-2-1 熱氧化 3
2-2-2 化學氣相沈積 5
2-3 薄膜殘留應力 7
第三章 薄膜應力量測技術 12
3-1 前言 12
3-2 文獻回顧 12
第四章 創新量測薄膜殘留應力之理論 15
4-1 薄膜楊氏係數之量測 15
4-2 薄膜殘留應力之量測 18
第五章 實驗結果 22
第六章 結論 45
附錄 (一) 46
附錄 (二) 47
參考文獻 65
參考文獻
[1] D. R. Franca and A. Blouin ,”All-optical measurement of in-plane and out-of-plane Young''s modulus and Poisson''s ratio in silicon wafers by means of vibration modes”
Meas. Sci. Technol. 15 No 5, (2004) 859-868
[2] C. Luo, T. W. Schneider, R C White, J Currie and M Paranjape,“A simple deflection-testing method to determine Poisson''s ratio for MEMS applications”
J. Micromech. Microeng. 13 No 1, (2003) 129-133
[3] H. Berney, M. Hill, A-M Kelleher, E. Hynes, M. O''Neill and W. A. Lane
“Investigation of the effect of processing steps on stress in a polysilicon structural membrane.”
J. Micromech. Microeng. 10 No 2 , (2000) 223-234
[4] W. Fang , “Determination of the elastic modulus of thin film materials using self-deformed micromachined cantilevers”
J. Micromech. Microeng. 9 No 3 , (1999) 230-235
[5] X. Zhang, T. Y. Zhang ,.Y. Zohar ,”Measurements of residual stress in thin films using micro-rotating-structures”
Thin solid films 335, (1998)97-105
[6] W. Fang and J. A. Wickert, “Determining mean and gradient residual stress in thin film using Micromachined cantilevers”
J. Micromech. Microeng. 6, (1996)301-309
[7] T. K. Hou and R. Chen ,”A new residual stress measurement method using ultra-wide micromachined bilayer cantilevers”
J. Micromech. Microeng. 14 No 4, (2004) 490-496
[8] A. B. Horsfall, J. M. M. dos Santos, S. M. Soare, N. G. Wright, A. G .O''Neill, S. J. Bull, A. J. Walton, A. M. Gundlach and J. T. M. Stevenson ,”Direct measurement of residual stress in sub-micron interconnects”
Semicond. Sci. Technol. 18 No 11 , (2003) 992-996
[9] M. W. Denhoff,” A measurement of Young''s modulus and residual stress in MEMSbridges using a surface profiler”
J. Micromech. Microeng. 13 No 5, (2003) 686-692
[10] W. Lang, Silicon microstructuring technology, “Materials Science and Engineering” :R : Reports .17 No1, (1996)1-55
[11] 行政院國科會精儀中心, ”微機電系統技術與應用”,P.864~883
[12] A. kov cs,W. Kronast and B. M. ller, “LPCVD against PECVD for micromechanical applications”
J. Micromech.Microeng.6(1996)1-13
[13]Peter Van Zant ,”Microchip fabrication : a practical guide to semiconductor process “, 4th ed. Mcgraw-Hill international edition
[14]田春林,”光學薄膜應力與熱膨脹係數量測之研究”
國立中央大學光電科學研究所博士論文,2000.
[15]L. Xiaodong; Bhushan, Bharat,"Between nanoindentation and scanning force microscopy: measuring mechanical propertiesin the nanometer regime” Materials Characterization 48 No 1,( 2002)11-36
[16]Baker, P. Shefford "Measurement of residual-stress effect by nanoindentation on elastically strained (100) W "
Thin Solid Films 308-309 No1-4, (1997)289-296
[17]S. Chowdhury,M.T. Laugier,I.Z. Rahman "Measurement of the mechanical of carbon nitride thin films from the nanoindentation loading cure"
Diamond and Related Materials 13, (2004)1543-1548
[18]R. Saha,William D. Nix,"Effect of the substrate on the determination of thin film mechanical properties by nanoindentation"
Acta Materialia 50, (2002)23-38
[19]X. Li,Bharat Bhushan ,"A review of nanoindentation continuouss stiffness measurement technique and uts application"
Materials Characterization 48, (2002)11-36
[20]N. William D. "Elastic and plastic properties of thin films on substrates: nanoindentation techniques
Materials Science and Engineering: 234-236, (1997) 37-44
[21]Bhushan, B.; Kulkarni, A.V."Nano/picoindentation measurements on single-crystal aluminum using modified atomic force microscopy
Materials Letters 29 No 4-6, (1996) 221-227
[22]Te-Hua Fang,Win Jin Chang "Nanomechanical properties of copper thin film on different substrates using the nanoindentation technique"
Microelectronic Engineering 65, (2002)231-238
[23]莊達人,”VLSI 製造技術”,高立出版社,P.43~46
[24]SHIMADZU Dynamic Ultra-micro Hardness Tester DUH-W201,DUH-W201SInstruction manual,P.5-1~5-14
[25]丁志華、管正平、黃新言、戴寶通,國家奈米元件實驗室
”奈米壓痕量測系統簡介”,奈米通訊,第九卷第三期,P.4~10
[26]A. Merlos, M. C. Acero, M. H. Baot, J. Bausells and J. Esteve, “A study of the undercutting characteristics in the TMAH — IPA system”
J. Micromach. Microeng. 2, (1992)181-183
[27] M. Mehregany and Y. C. Tai,” Surface micromachined mechanisms and micromotors”
J. Micromech. Microeng. 1 No 2 , (1991) 73-85
[28]G. F. Cardinale, D. G. Howitt , K. F. McCartyD.L.Medlin,P.B.Mirkarimi,
N.R.Moody,“Analysisof residual stress in cubic boron nitride thin films using micromachined cantilever beams"
Diamond and Related Material 5, (1996)1295-1302
[29] S. Mitsuhiro, S. Kazuo, T. Kenji; U. Daisuke, “Differences in anisotropic etching properties of KOH and TMAH solutions”
Sensors and Actuators A: Physical 80 No 2, (2000)179-188
[30] James M. Gere, Mechanics of materials, Fifth Edition
[31]C. Z. Ren, T. Y. Wang, X. M. Jin, H. Xu, "Experimental research on the residual stress in the surface of silicon nitride ceramic ball"
Journal of Materials Processing Technology 129, (2002)446-450
[32] K-S Chen and K-S Ou ,”Modification of curvature-based thin-film residual stress measurement for MEMS applications”
J. Micromech. Microeng. 12 No 6, (2002) 917-924
[33]G. G. Stoney, ”The tension of metallic films deposited by electrolysis “
Proc. Roy. Soc. ,A82(1909)172-175
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔