跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/29 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳勇興
研究生(外文):Wu, Yeong-Shing
論文名稱:自發性高溫好氧處理程序之研究:系統參數測定演算法之開發
論文名稱(外文):DEVELOPING ALGORITHMS FOR THE DETERMINATION OF SYSTEM PARAMETERS ON THE AUTOTHERMAL THERMOPHILIC AEROBIC TREATMENT
指導教授:盧至人江舟峰江舟峰引用關係
指導教授(外文):Lu, Chih-JenChiang, Chow-Feng
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:203
中文關鍵詞:自發性高溫好氧處理呼吸儀生物反應動力學生物反應熱比生物潛熱系統分析
外文關鍵詞:autothermal thermophilic aerobic treatmentrespirometerbiological reaction kineticsbiological reaction heatspecific biological heat potentialsystem analysis
相關次數:
  • 被引用被引用:16
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
自發性高溫好氧廢水處理程序(autothermal thermophilic aerobic treatment,簡稱ATAT)是一種能自發性達45 — 65 oC之生物好氧處理程序,與活性污泥程序(ASP)相較,具有降低過剩污泥與提高反應速率之優點,但在設計操作上,目前熱平衡及動力分析工具相當不足,本研究乃研發數學與實驗分析工具,探討比生物潛熱(hb,kcal/(g Ou))與系統動力參數測定方法,並利用呼吸儀實驗與實廠數據進行驗證。本研究開發三種動力演算法(algorithm)及二種生物潛熱演算法:(1)呼吸儀批次動力演算法,(2)呼吸儀系列稀釋(serial dilution)動力演算法,(3)呼吸儀圖譜(respirogram)圖解法,(4)呼吸儀比生物潛熱演算法,以及(5)實廠熱平衡模式演算法。
本研究首先以Monod動力模式為基礎,將傳統之攝氧圖譜(Ou vs. t)轉換為攝氧率對攝氧圖譜(OUR vs. Ou),推導兩相動力模式(2-phase model),據此開發出批次生物動力演算法,只需藉由一次批次實驗,即可求出四個Monod動力參數(mm, Yg, Ks, kd)、植菌濃度(Xo)、與初始基質濃度(So)。本研究以高濃度(10,000 mg/L COD)葡萄醣為基質,於55oC進行測試,結果顯示最大比生長速率(mm)為6.37 1/d,生長係數(Yg)為0.84 mg BOD of X/ mg BOD of S,半飽和係數(Ks)為82.3 mg/L BOD,衰減係數(kd)為0.44 1/d。
本研究另開發系列稀釋動力演算法,亦可適用於非Monod模式之求解,只需藉由一組不同基質濃度批次實驗,即可評比適用之動力模式(Haldane或Monod),並求解動力參數,而且亦可求解生物可降解率(bBOD/COD)。本研究以親水性有機酸para-hydroxy- benzoic acid (PHBA)為基質進行呼吸儀實驗,結果顯示生物可降解率(bBOD/ThOD)為1.38 mg BOD/ mg ThOD,淨生長係數(Yo)為0.16 BOD of X/BOD of S,並判斷為Michaelis-Menten模式,最大比基質降解率(km)為1.3 1/hr,半飽和係數(Ks)為12 mg/L BOD。推測bBOD/ThOD大於1 mg BOD/ mg ThOD之可能原因,為試驗中並未加入硝化抑制劑(TCMP),導致添加之營養鹽NH4Cl產生硝化作用所造成。
呼吸儀圖譜圖解法可求解動力參數外,亦可用於呼吸儀系統操作診斷。本研究經由評比不同植菌來源之葡萄糖/麩胺酸試驗(GGA test)發現:菌種來源與攪拌程度對於攝氧特性有密切關係,其他因素如菌種族群的多樣性、植菌之均質性(homogeneity)、與植菌夾帶基質殘留,都是植菌影響攝氧圖的可能因素。
本研究嘗試自行開發生物熱卡計(bio-colorimeter),可同時量測累積補熱(Hc vs. t)與攝氧數據(Ou vs. t),配合本研究開發之比生物潛熱演算法,可估測比生物潛熱。利用高濃度(10,000 mg/L COD)葡萄糖為基質,於55oC溫度進行測試,結果顯示比生物潛熱(hb)為51.4 kcal/(g Ou),比前人文獻值3.4 — 3.5 kcal/(g Ou)高出許多,且再現性甚差,變異係數(Cv)高達80%。進一步利用電腦模擬輔助設計(CAD)進行誤差分析,發現主要誤差來源為:補溫加熱棒加熱功率過高(100 W)、溫度測棒之精準度太低(±0.25oC)、開/關溫度控制方式(on/off control)不夠穩定(溫控頻率0.5 1/s太小)、氧氣測棒不適用於高溫操作(大於45oC),建議未來能針對這些缺失進行後續研究改善。
本研究最後開發一實廠熱平衡模式,可利用操作溫度(Tt)、進流水與出流水COD濃度(Si,COD, Se,COD)、曝氣槽與放流水污泥濃度(Xt,SS, Xe,SS),求取比生物潛熱(hb)。本研究以國內北部某一ATAT食品油脂廢水實廠六個月之監測數據進行個案探討。結果顯示由於生物反應熱率(Jb)提供主要熱源(89.1%),能將進流水由29oC自發性提升到48oC高溫反應,因此證實該廠實為ATAT操作。敏感度分析結果則顯示增加污泥停留時間(SRT)、氧傳效率(OTE)與進流水溫度(Tw)與濃度(Si,COD),皆會增加曝氣槽溫度(Tt)。當OTE為20%及SRT為30 d時,進流水濃度(Si,COD)至少要6,000 mg/L COD以上,才能維持45oC之ATAT操作。若要維持50oC以上之ATAT操作,進流水濃度(Si,COD)至少要9,000 mg/L COD以上。
The autothermal thermophilic aerobic treatment (ATAT) is a biological process in which the operating temperature can be maintained spontaneously at 45 — 65 oC. Comparing with the activated sludge process (ASP), the ATAT produces significantly less excess sludge yet proceed at higher reaction rate. However there is a need of developing evaluation tools for heat and kinetic analysis for the ATAT system. This study aims to develop mathematical and laboratory procedure for the determination of specific biological heat potential (hb, cal/(g Ou)) and kinetic parameters for the ATAT system. In order to verify these procedures, this study conducts respirometric tests and analyzes data collected from full-scale ATAT operation. Three kinetic algorithms and two hb algorithms are proposed for this study: (1) respirometric batch kinetic algorithm, (2) respirometric serial dilution kinetic algorithm, (3) respirometric graphical kinetic algorithm, (4) respirometric hb algorithm, and (5) full-scale hb algorithm.
Based on the Monod kinetics, this study first develops a two-phase model for analyzing a batch OUR vs. Ou respirogram. An algorithm is then proposed to determine the four Monod kinetic parameters (mm, Yg, Ks, and kd) and the initial seed (Xo) and substrate (So) concentration. The algorithm is illustrated by a respirometric test on glucose of 10,000 mg/L COD at a temperature of 55oC. The result shows a maximal specific growth rate (mm) of 6.37 1/d, gross growth yield (Yg) of 0.84 mg BOD of X/mg BOD of S, half-saturation constant (Ks) of 82.3 mg/L BOD, and decay coefficient (kd) of 0.44 1/d for the ATAT system.
This study also develops a respirometric serial dilution kinetic algorithm. The procedure requires only one batch test, using a series of substrate concentration (So) at the same seeding dosage (Xo). The algorithm can be used to determine for the type of kinetic model (Haldane vs. Monod) based on testing results with that the corresponding kinetic parameters can be assessed. In addition, the algorithm can determine a ratio of biodegradability (bBOD/ThOD) of the substrate. A test is conducted on para-hydroxybenzoic acid (PHBA) as the substrate at various concentrations. The result shows a biodegradability ratio (bBOD/ThOD) of 1.38 mg BOD/mg ThOD and observed growth yield (Yo) of 0.16 BOD of X/ BOD of S. It further determines that the Michaelis-Menten model is more appropriate with a km of 1.3 1/hr and Ks of 12 mg/L BOD. The bBOD/ThOD is greater than 1, which may be caused by the nitrification of NH4Cl being added as a nutrient for that nitrification inhibitor (TCMP) is not used.
The graphical algorithm offers another solution for kinetic parameter estimation based on OUR vs. Ou respirograms, which can also be used for the diagnosis of respirometer tests. This study performs a respirometric test on glucose-glutamic acid (GGA) at three different seeding sources. The result shows that seeding source and the mixing intensity are two major factors affecting the pattern of respirogram. Other factors include the diversity of microbial consortium, the homogeneity of seeding, and the substrate residual carried over from seeding materials.
This study attempts to develop a bio-calorimeter capable of simultaneous measuring of accumulative heat compensation data (Hc vs. t) and oxygen uptake data (Ou vs. t) so that the hb of a given substrate can be experimentally determined. A test is conducted on glucose of 10,000 mg/L COD, yielding an average hb of 51.4 kcal/(g Ou) with a large variation coefficient (Cv) of 80%. The estimated hb is much higher than the value of 3.4 — 3.5 kcal/(g Ou) reported by previous researchers. An analysis by computer aided design (CAD) program indicates that the errors are likely associated with high compensating heater power (100 W), poor precision of temperature probe (±0.25oC), less frequent on/off temperature control (0.5 1/s), and high operating temperature (> 45oC) making the oxygen sensor malfunction. It is suggested further study be made for improvement.
For full-scale application, this study also develops a heat balance model for assessing hb and system analysis based on daily operating data of temperature (Tt), COD of influent (Si,COD) and effluent (Se,COD), biomass concentration (Xt,SS), and effluent solids (Xe,SS). A case study is analyzed using 6-month daily operating data of a full-scale ATAT plant located at north part of Taiwan. The plant was verified to be definitely autothermal for that the biological heat rate (Jb) was determined to be the major source (89.1%) for heating the influent at 29oC to the reaction temperature of 48oC. The result shows that increasing the sludge retention time (SRT), the oxygen transfer efficiency (OTE), and the influent temeperature (Tw) and concentration (Si,COD) can all increase the autothermal temperature (Tt). The analysis also indicates that, providing an oxygen transfer efficiency (OTE) of 20% and SRT of 30 d, the influent substrate should be at least 6,000 and 9,000 mg/L COD to maintain the operating temperature of 45oC and 50oC, respectively.

表目錄 v
圖目錄 vi
摘要 1
Abstract 4
第一章 緒論 7
第二章 文獻回顧 11
2-1 自發性高溫好氧廢水處理程序之簡介 11
2-2 生物處理程序設計之歷史沿革 13
2-3 生物反應動力研究 16
2-4 生物能量學研究 21
2-5 廢水生物處理系統之熱平衡研究 25
2-6 生物熱卡計研究 27
2-7 呼吸儀研究 30
第三章 理論 32
3-1 呼吸儀單一批次生物反應動力演算法之數學推導 32
3-2 呼吸儀攝氧圖譜特徵參數之數學推導 41
3-3 呼吸儀稀釋系列生物反應動力演算法之數學推導 48
3-4 呼吸儀比生物潛熱實驗值估測演算法推導 55
3-5 自發性高溫好氧處理程序熱平衡模式推導 59
第四章 實驗設計與實驗方法 62
4-1 高溫馴化培養 64
4-1-1 高溫馴化槽之設計 64
4-1-2 高溫馴化槽之操作 66
4-2 呼吸儀ATAT試驗 68
4-2-1 呼吸儀生物熱卡計之設計 68
4-2-2 呼吸儀ATAT試驗之操作 70
4-3 食品油脂廢水ATAT實廠 71
第五章 結果與討論 74
5-1 呼吸儀單一批次生物反應動力演算法 74
5-1-1 線性化近似法誤差探討 74
5-1-2 以蒙地卡羅模擬驗證分隔點移動演算法 80
5-1-3 高溫菌單一批次生物反應動力試驗測試結果 87
5-2 呼吸儀攝氧圖譜特徵參數圖解法 93
5-2-1 特徵參數圖解法敏感度分析 93
5-2-2 特徵參數圖解法實例分析 100
5-3 呼吸儀稀釋系列生物反應動力演算法 105
5-4 呼吸儀ATAT試驗比生物潛熱實驗值估測演算法 117
5-4-1 高溫菌之比生物潛熱實驗值估測 117
5-4-2 比生物潛熱實驗值估測演算法之誤差分析 121
5-5 自發性高溫好氧處理程序熱平衡模式 128
5-5-1 自發性高溫好氧處理實廠熱平衡分析 128
5-5-2 自發性高溫好氧處理實廠比生物潛熱估算 135
5-5-3 自發性高溫好氧處理熱平衡模式敏感度分析 144
第六章 結論與建議 153
第七章 符號與縮寫 161
第八章 參考文獻 167
附錄 173
附錄一: 個人學經歷資料 173
附錄二: 修課情況 174
附錄三: 論文發表情形 175
江舟峰, “製程廢水呼吸儀高溫喜氣生物分解可行性研究”, 朝陽科技大學環管系業界委託計劃期末報告, 台中縣, 1998.
江舟峰, “呼吸儀在廢水監控技術之理論與應用”, 朝陽科技大學環管系簡報資料, 台中縣, 2001.
李宜玶, “探討臭氧對天然有機物生物降解之影響”, 中興大學環工系碩士論文, 台中市, 2003.
邱明良, “受多環芳香族碳氫化合物-奈、菲污染土壤之生物復育研究”, 中興大學環工系碩士論文, 台中市, 2000.
許以樺, “以高溫好氧處理油脂廢水可行性研究”, 中興大學環工系碩士論文, 台中市, 2000.
陳俊宏, “生化需氧量呼吸儀測定法之研究”, 朝陽科技大學環管系碩士論文, 台中縣, 2003.
Andrews, J.F. (1968) “A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates.” Biotechnology and Bioengineering, 10, 707—723.
American Public Health Association (APHA), American Water Works Association, and Water Environment Federation (1998) Standards for Examination of Water and Wastewater — Part 5210: Biochemical Oxygen Demand (BOD), 20th Ed., Washington DC.
Argaman, Y. and Adams, C.F. Jr. (1977) “Comprehensive temperature model for aerated biological systems.” Progress in Water Technology, 9(1/2), 397—409.
Baird, R.B. and Smith, R.K. (2002) Third Century of Biochemical Oxygen Demand, Water Environment Federation, Alexandria, VA.
Beaubien, A. and Jolicoeur, C. (1985) “Applications of flow microcalorimetry to process control in biological treatment of industrial wastewater.” Journal WPCF, 57(1), 95—100.
Berthouex, P.M. and Brown, L.C. (2002) Statistics for Environmental Engineers, 2nd Ed., Lewis Publishers: New York.
Brown, E.V. and Enzminger, J.D. (1991) “Temperature profile and heat transfer model for a chemical wastewater treatment plant.” Environmental Progress, 10(3), 159—168.
Brown, S.C., Grady, C.P.L. Jr., and Tabak, H.H. (1990) “Biodegradation kinetics of substituted phenolics: determination of a protocol based on electrolytic respirometer,” Water Research, 24, 853—861.
Cech, J.S., Chudoba, J., and Grau, P. (1984) “Determination of kinetic constants of activated sludge microorganisms.” Water Science and Technology, 17(2/3), 259—272.
Chiang C.F. (1983) M.S. Thesis: Development of a Design Model for the Static-Bed Submerged Media Anaerobic Reactor. University of Iowa, Iowa.
Chiang, C.F., Lu, C.J., Sung, L.K., and Wu, Y.S. (2001) “Full-scale evaluation of heat balance for autothermal thermophilic aerobic treatment of food processing wastewater.” Water Science and Technology, 43(11), 251—258.
Cooney, C.L., Wang, D.I.C., and Mateles, R.I. (1968) “Measurement of heat evolution and correlation with oxygen consumption during microbial growth.” Biotechnology and Bioengineering, 11, 269—281.
Fortier, J.L., Reboul, B., Philip, P., Simard, M.A., Picker, P., and Jolicoeur, C. (1980) “Calorimetric studies of biodegradation processes in biological wastewater treatment.” Journal WPCF, 52(1), 89—97.
Grady, C.P.L. Jr, Dang, J.S., Harvey, D.M., Jobbagy, A., and Wang, X.L. (1989) “Determination of biodegradation kinetics through use of electrolytic respirometry.” Water Science and Technology, 21, 957—968.
Grady, C.P.L. Jr., Daigger, G.T., and Lim, H.C. (1999) Biological Wasterwater Treatment, 2nd Ed., Marcel Dekker, Inc.: New York.
Haldane, J.B.S. (1930) Enzymes. Longmans Green, MIT Press: Cambridge, Mass.
Herbert, D., Elsworth, R., and Telling, R.C. (1956) “The continuous culture of bacteria: A theoretical and experimental study.” Journal of General Microbiology, 14, 601—622.
Ishikawa, Y. and Shoda, M. (1981) “Design and performance of a new microcalorimetric system for aerobic cultivation of microorganisms.” Biotechnology and Bioengineering, 23, 2629—2640.
Jewell, W.J. and Kabrick, R.M. (1980) “Autoheated aerobic thermophilic digestion with aeration.” Journal WPCF, 52(3), 512—523.
Kambhu, K. and Andrews, J. F. (1968) “Aerobic thermophilic process for the biological treatment of wastes — Simulation studies.” Journal WPCF, 41(5), Part 2, R127—R141.
Kono (1968) “Kinetics of microbial cell growth.” Biotechnology and Bioengineering, 10, 105—131.
Lapara, T.M. and Alleman, J.E. (1999) “Review paper — Thermophilic aerobic biological wastewater treatment.” Water Research, 33(4), 895—908.
Lawrence, A.W. and McCarty, P.L. (1970) “Unified basis for biological treatment design and operation.” Journal of the Sanitary Engineering Division — Proceedings of the American Society of Civil Engineers, 96, 757—778.
Luong, J.H.T. and Volesky, B. (1980) “Determination of the heat of some aerobic fermentations.” The Canadian Journal of Chemical Engineering, 58, 497—504.
Luong, J.H.T., Yerushalmi, L., and Volesky, B. (1983) “Esimating the maintenance energy and biomass concentration of Saccharomyces cerevisiae by continuous calorimetry.” Enzyme Microb. Technol., 5, 291—296.
Marison, I.W. and von Stockar, U. (1986) “The application of a novel heat flux calorimeter for studying growth of Escherichia coli W. in aerobic batch culture.” Biotechnology and Bioengineering, 28, 1780—1793.
Marison, I.W., Liu, J.S., Ampuero, S., von Stockar, U., and Schenker, B. (1998) “Biological reaction calorimetry: development of high sensitive bio-calorimeters.” Thermochmica Acta, 309, 157—173.
McCarty, P.L. (1964) “Thermodynamics of biological synthesis and growth.” Advances in Water Pollution Research — Proceedings of the Second International Conference, Tokyo, Pergamon Press.
McCarty, P.L. (1971) “Energetics and bacterial growth.” In Faust S. D. and Hunter J. V. Ed.: Organic Compounds in Aquatic Environments, Marcel Dekker, Inc., New York.
McCarty, P.L. (1972) “Energetics of organic matter degradation.” In Mitchell, R. Ed.: Water Pollution Microbiology, John Wiley & Sons, Inc., New York.
McCarty, P.L. (1975) “Stoichiometry of biological reactions.” Progress in Water Technology, 7(1), 157—172.
Meir-Schneiders, M., Grosshans, U., Busch, C., and Eigenberger, G. (1995a) “Biocalorimetry supported analysis of fermentation processes.” Applied Microbiology and Biotechnology, 43, 431—439.
Meier-Schneiders, M., Weikmann, W., Grosshans, C., Busch, C., and Steinbuchel, A. (1995b) “On-line analysis of Alcaligenes eutrophus fermentations.” Canadian Journal of Microbiology, 41(Suppl. 1), 267—273.
Meier-Schneiders, M., Schafer, F., Grosshans, U., and Busch, C. (1995c) “Impact of carbon dioxide evolution on the calorimetric monitoring of fermentations.” Thermochimica Acta, 251, 85—97.
Messenger, J.R., de Villiers, H.A., and Ekama, G.A. (1990) “Oxygen utilization rate as a control parameter for the aerobic stage in dual digestion.” Water Science and Technology, 22(12), 217—227.
Metcalf and Eddy, Inc. (1991) Wastewater Engineering: Treatment, Disposal, and Reuse, 3rd Ed.; McGraw-Hill, Inc.: New York.
Michaelis, L. and Menten, M.L. (1913) “Die Kinetik der Invertinwirkung.” Biochemische Zeitschrift, 49, 333—369.
Monod, J. (1949) “The growth of bacterial cultures.” Annual Review of Microbiology, 3, 371—394.
Mou, D.G. and Cooney, C.L. (1976) “Application of dynamic calorimetry for monitoring fermentation process.” Biotechnology and Bioengineering, 18, 1371—1392.
Rittmann, B.E., Bae, W., Namkung, E., and Lu, C.J. (1987) “A critical evaluation of microbial product formation in biological process.” Water Science and Technology, 19(7), 517—528.
Rittmann, B.E. and McCarty, P.L. (2001) Environmental Biotechnology: Principles and Applications, Chapter 6, p.307—393, McGraw-Hill, Inc.: Taipei.
Robinson, J.A. and Tiedje, J.M. (1983) “Nonlinear estimation of Monod Growth Kinetic Parameters from a single depletion curve.” Applied Environmental Microbiology, 45, 1453-1458.
Rozich, A.F. and Borgacs, K. (2001) “Use of thermophilic biological aerobic technology for industrial waste treatment.” The Second World Water Congress of IWA, Berlin, Germany.
Rozich, A.F. and Gaudy, A.F. Jr. (1992) Design and Operation of Activated Sludge Processes Using Respirometry, p.82 — 94, Lewis Publishers, Inc.: Boca Raton, Fla.
Sherrard, J.H. and Schroder, E.D. (1973) “Cell yield and growth rate in activated sludge.” Journal WPCF, 45(9), 1889—1897.
Silman, R.W. (1986) “Anaerobic calorimetery of Zymomonas mobilis using a heat-flux sensor.” Biotechnology and Bioengineering, 28, 1769—1773.
Smets, B.F., Jobbagy, A., Cowan, R.M., and Grady, C.P.L. Jr. (1996) “Evaluation of Respirometric Data: Identification of features that preclude data fitting with existing kinetic expressions.” Ecotoxicology and Environmental Safety, 33, 89—99.
Surucu, M.H., Chian, E.S.K., and Engelbrecht, R.S. (1975) “Thermophilic microbiological treatment of high strength wastewaters with simultaneous recovery of single cell protein.” Biotechnology and Bioengineering, 17, 1639—1662.
Surucu, G.A., Chian, E.S.K., and Engelbrecht, R.S. (1976) “Aerobic thermophilic treatment of high strength wastewaters.” Journal WPCF, 48(4), 669—679.
US EPA (1990) Technology Transfer — Environmental Regulations and Technology — Autothermal Thermophilic Aerobic Digestion of Municipal Wastewater Sludge, EPA/625/10-90/007, pp.65.
Van Kleeff, B.H.A., Kuenen, J.G., and Heijnen, J.J. (1993) “Continuous measurement of microbial heat production in laboratory fermentors.” Biotechnology and Bioengineering, 41, 541—549.
Van Kleeff, B.H.A., Kuenen, J.G., Honderd, G., and Heijnen, J.J. (1995) “Model-based optimization of equipment and control for heat flux measurements in a laboratory fermentor.” Biotechnology Progress, 11, 525—532.
Van Kleeff, B.H.A., Kuenen, J.G., and Heijnen, J.J. (1996) “Heat flux measurements for the fast monitoring of dynamic responses to glucose additions by yeasts that were subjected to different feeding regimes in continuous culture.” Biotechnology Progress, 12, 510—518.
Vanrolleghem, P.A. (2002) “Principles of respirometry in activated sludge wastewater treatment.” presented at the workshop of Recent Development in Respirometry for Wastewater Treatment Plant Monitoring and Control, Taiwan.
Vismar, R. (1985) “A model for autothermic aerobic digestion — Effects of scale depending on aeration efficiency and sludge concentration.” Water Research, 49(4), 441—447.
Von Stockar, U. and Marison, I. W. (1989) “The use of calorimetry in biotechnology.” Advances in Biochemical Engineering/Biotechnology, 40, 93—136.
Talati, S.N. and Stenstorm, M.K. (1990) “Aeration-basin heat loss.” Journal of Environmental Engineering, 116(1), 70—86.
Young, J.C.: 2000, ‘Using Oxygen Uptake Rate to Fingerprint Activated Sludge Processes’, in Proceedings of the Third International Symposium on Advanced Environmental Monitoring, Kwangju Institute of Science and Technology, Kwangju, Korea.
Young, J.C. and Baumann, C.R. (1976a) “The electrolytic respirometer — I: factors affecting oxygen uptake measurements,” Water Research, 10, 1031—1040.
Young, J. C. and Baumann, C.R. (1976b) “The electrolytic respirometer — II: Use in water pollution plant laboratories,” Water Research, 10, 1141—1149.
Young, J.C. and Cowan, R.M. (2002) “Use of Respirometers for Environmental Science and Engineering Applications: Chapter 2 & 4.” presented at the workshop of Recent Development in Respirometry for Wastewater Treatment Plant Monitoring and Control, Taiwan.
Zaldivar, J.M., Hernandez, H., and Barcons, C. (1996) “Development of a mathematical model and a simulator for the analysis and optimisation of batch reactors: experimental model characterisation using a reaction calorimeter.” Thermochimica Acta, 289, 267—302.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top