跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張時雨
研究生(外文):Chang Shih-yu
論文名稱:碳源對藍綠菌AnabaenaCH1、CH2、CH3光合產氫能力影響之研究
指導教授:李季眉李季眉引用關係陳伯中陳伯中引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:115
中文關鍵詞:藍綠菌氫氣碳源生物產氫
相關次數:
  • 被引用被引用:5
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:2
依照人類利用能源的速度來看,化石燃料即將耗盡,故發展替代性能源是刻不容緩的事,而氫氣是一種具發展潛力之替代能源,故許多國家將氫氣生產納入政策當中;利用生物方式產生氫氣是一種不會污染環境且不需另外消耗能源之氫氣生產方式,具有產氫能力之微生物有許多種,其中藍綠菌由於可利用光能產生氫氣,同時消耗二氧化碳減少溫室效應等優點,適合做為研究生物產氫之材料。
本研究將藍綠菌株CH1、CH2、CH3培養於好氧光照之培養槽內,使菌株大量生長後,進行生物產氫批次實驗,探討不同生長期之細胞、不同種類及濃度之碳源添加,氮源有無、厭氧或好氧,及光照或黑暗等條件下之生物產氫能力。
結果顯示,對數生長期之菌株CH1於未添加碳源與氮源之最大氫氣累積量為4 mL H2 / 100 mL Head Space,而對數生長後期之菌株CH3在添加4% 二氧化碳培養條件下之最大氫氣累積量,於66小時為8 mL H2 / 100 mL Head Space。
於添加不同濃度碳源之批次實驗結果顯示,菌株CH1與CH3培養於添加各種濃度醋酸鈉之氫氣累積量皆小於1 mL H2 / 100 mL Head Space。而添加1500 mg/L葡萄糖後菌株CH3於150小時後開始產生氫氣,最大氫氣累積量達23.1 mL H2 / 100 mL Head Space;添加2000 mg/L果糖之菌株CH3最大氫氣累積量達到88 mL H2 / 100 mL Head Space。
添加固定濃度碳源進行生物產氫批次實驗發現,(1)菌株CH1於添加2000 mg/L果糖之基質利用率最高,且氫氣累積量可達79 mL H2 / 100 mL Head Space,而添加蔗糖之氫氣累積量達32 mL H2 / 100 mL Head Space,但添加半乳糖、鼠李糖、蔗糖、乳糖之基質利用率皆小於10%,且不會產氫。(2)菌株CH3於添加2000 mg/L果糖時,基質利用率高達97.5%,且氫氣累積量達79 mL H2 / 100 mL Head Space,添加蔗糖之基質利用率高於60%,氫氣累積量達55 mL H2 / 100 mL Head Space,添加葡萄糖之基質利用率亦高達90%,而氫氣累積量為27 mL H2 / 100 mL Head Space,添加半乳糖、鼠李糖、蔗糖、乳糖之基質利用率為40% 至60%,氫氣累積量皆小於10 mL H2 / 100 mL Head Space。(3)菌株CH2不具產氫能力。
在對數生長期添加2000 mg/L果糖之生物產氫批次實驗發現,菌株CH1於添加2000 mg/L果糖後,氫氣累積量最高達到25.1 mL H2 / 100 mL Head Space,細胞生質量增加量為759 mg/L。菌株CH3於添加2000 mg/L果糖後,氫氣累積量最高達到27.6 mL H2 / 100 mL Head Space,細胞生質量增加量為522 mg/L;菌株CH2則不具產氫能力。
在同時添加2000 mg/L果糖與660 mg/L氨氮後,菌株CH1與CH3皆不會氣體,菌株CH1與CH3之果糖與氨氮含量下降至一定濃度後不再下降,有機酸含量亦較未添加氨氮者低。
在好氧條件下,添加2000 mg/L果糖後菌株CH1與CH3之基質利用率高達98%以上,且碳源在120小時內即利用完全,不會產生氫氣。
培養至對數生長後期之菌株CH1與CH3,在黑暗下之氫氣累積量約為8 mL H2 / 100 mL Head Space,較光照下對數生長後期之菌株其氫氣累積量為低。
綜合結果發現,於厭氧光照下,對數生長後期之菌株CH1與菌株CH3,在添加2000 mg/L果糖且不添加氮源之條件下,生物產氫能力較其他條件為強;菌株CH2則不具生物產氫能力。
Hydrogen evolution by cyanobacteria is a potential way of biohydrogen production for the future. Nitrogen-fixing cyanobacteria are photosynthetic organism with simple need, using CO2 and N2 as source of carbon and nitrogen, and sunlight as their source of energy. Cyanobacteria are able to evolve H2 in light catalysed by nitrogenase activity, with water serving as the primary electron donor.
Since the optimal operating conditions for the CO2 uptake and H2 production are different, a two-stage system can be effectively employed to separate these two phases. In this study, Anabaena sp. CH1, CH2, and CH3 has been isolated and purified from paddy soils of middle Taiwan and the physiology of nitrogen metabolism of these two species has been studied, ether. These cyanobacterium were incubated in 4% CO2 and 96% air with 40 Wm2 intensity of light in the 150 mL volume reactors. After cultured a pried of time, cyanobacterium was translated into a 60 mL volume batch reactor proceeded a series of biohdyrogen batch experiments such as different kinds and concentrates of carbon source, log or later growth phase, with or without 660 mg/L ammonium, anaerobic or aerobic, light or dark, and different species of cyanobacterium.
When 2000mg/L carbohydrates, such as fructose, glucose, galactose, rhamnose, lactose, and sucrose, been used as carbon source, it indicated that fructose is one of the most helpful inducer to product hydrogen.
Cumulative H2 production was higher when cyanobacterium growing in later phase then in log phase. And there was no H2 production when incubated in 660 mg/L ammonium, nether in the dark.
Over all, it was found that when added 2000 fructose under argon as gas phase with 5 Wm2 intensity of light and growth in later phase, cyanobacterium CH3 produce a maximum cumulative hydrogen pruduction as 80 mL H2 / 100 mL Head Space without oxygen co production.
目 錄
摘要 I
Abastrate III
目錄 V
表目錄 X
圖目錄 XI
第1章 前言 1
第2章 文獻回顧 2
2-1 研究源起 2
2-1-1 能源危機 2
2-1-2 氫能源之優點 2
2-1-3 氫能源利用 3
2-1-4 氫氣生產方式 3
2-2 生物產氫 4
2-2-1 具有產生氫氣能力之微生物種類 4
2-2-2 藍綠菌產氫之優點 5
2-3 藍綠菌之分類、光合作用與固氮作用 7
2-3-2 藍綠菌之光合作用 8
2-3-3 藍綠菌之固氮作用 8
2-4 藍綠菌之生物產氫作用 9
2-4-1 藍綠菌之生物產氫機制 9
2-4-2 藍綠菌產氫之酵素系統 12
2-4-3 藍綠菌產生氫氣之影響因子 14
2-5 菌株CH1、CH2、CH3之研究 16
第3章 研究架構 18
第4章 材料與方法 19
4-1 菌種來源、純化與保存方式 19
4-1-1 菌種來源 19
4-1-2 菌種純化 19
4-1-3 菌種保存/純化固體培養基 20
4-1-4 菌種保存/增殖液體培養基 21
4-2 菌種培養 23
4-2-1 菌種培養槽架設情形 23
4-2-2 菌種培養槽生長曲線測定 24
4-3 批次實驗 26
4-3-1 批次實驗進行之環境條件與流程 26
4-3-1-1 批次實驗進行之環境條件 26
4-3-1-2 批次實驗流程 27
4-3-2 厭氧光照下,不同生長期菌株CH1與CH3未添加碳氮源生物產氫批次實驗 30
4-3-3 厭氧光照下,不同生長期菌株CH1與CH3於氣相中添加4% 二氧化碳之生物產氫批次實驗 30
4-3-4 厭氧光照下,對數生長後期菌株CH1與CH3添加不同濃度醋酸鹽及醣類之生物產氫批次實驗 30
4-3-5 厭氧光照下,對數生長後期菌株CH1、CH2、CH3添加單糖及雙糖之生物產氫批次實驗 30
4-3-6 厭氧光照,對數生長期菌株CH1、CH2、CH3之生物產氫批次實驗 31
4-3-7 厭氧光照下,對數生長後期菌株CH1與CH3添加果糖及氨氮之生物產氫批次實驗 31
4-3-8 好氧光照下,對數生長後期菌株CH1與CH3添加果糖之生物產氫批次實驗 31
4-3-9 厭氧黑暗下,對數生長後期菌株CH1與CH3添加果糖之生物產氫批次實驗 31
4-4 分析方法 33
4-4-1 細胞濃度 33
4-4-2 葉綠素含量 33
4-4-3 pH值分析 34
4-4-4 細胞生質量 34
4-4-5 氣體含量分析 34
4-4-6 化學需氧量-COD值分析 36
4-4-7 果糖含量分析 37
4-4-8 氨氮含量分析 38
4-4-9 有機酸分析 39
4-4-10 異形細胞頻率分析 40
4-4-11 葡萄糖含量分析 41
4-5 實驗用水及鹼洗液 41
第5章 結果與討論 42
5-1 菌種於培養槽內生長曲線測定 42
5-2 厭氧光照下不同生長期菌株CH1與CH3未添加碳氮源與於氣相中添加4% 二氧化碳之生物產氫批次實驗 45
5-2-1 不同生長期菌株CH1與CH3未添加碳氮源之產氫批次實驗 45
5-2-2 不同生長期菌株CH1與CH3於氣相中添加4% 二氧化碳之生物產氫批次實驗 46
5-3 厭氧光照下,對數生長後期菌株CH1與CH3添加不同濃度醋酸鹽及醣類之生物產氫批次實驗 48
5-3-1 菌株CH1與CH3添加不同濃度醋酸鈉之生物產氫批次實驗 49
5-3-2 菌株CH1與CH3添加不同濃度葡萄糖之生物產氫批次實驗 51
5-3-3 菌株CH1與CH3添加不同濃度果糖之生物產氫批次實驗 53
5-4 厭氧光照下,對數生長後期菌株CH1、CH2、CH3添加單糖之生物產氫批次實驗 55
5-4-1 菌株CH1、CH2、CH3添加2000 mg/L果糖之生物產氫批次實驗 55
5-4-2 菌株CH3添加2000 mg/L葡萄糖之生物產氫批次實驗 64
5-4-3 菌株CH1與菌株CH3添加2000 mg/L半乳糖生物產氫批次實驗 67
5-4-4 菌株CH1與菌株CH3添加2000 mg/L鼠李糖生物產氫批次實驗 70
5-5 厭氧光照下,對數生長後期之菌株CH1與CH3添加雙糖生物產氫批次實驗 73
5-5-1 菌株CH1與CH3添加2000 mg/L乳糖之生物產氫批次實驗 73
5-5-2 菌株CH1與CH3添加2000 mg/L蔗糖之生物產氫批次實驗 76
5-6 厭氧光照下,對數生長後期菌株CH1與CH3添加不同碳源之生物產氫能力比較 79
5-7 厭氧光照下,對數生長期菌株CH1、CH2、CH3添加果糖之生物產氫批次實驗 84
5-7-1 厭氧光照下,對數生長期菌株CH1、菌株CH2、菌株CH3添加2000 mg/L果糖之生物產氫批次實驗 84
5-7-2 厭氧光照下,對數生長期與對數生長後期菌株CH1、CH2、CH3添加果糖之生物產氫能力比較 88
5-8 厭氧光照下,對數生長後期菌株CH1與CH3添加果糖及氨氮之生物產氫批次實驗 90
5-8-1 厭氧光照下,對數生長後期菌株CH1與CH3只添加碳源與同時添加碳源氮源之生物產氫能力比較。 90
5-9 好氧光照下,對數生長後期菌株CH1與CH3添加果糖之生物產氫批次實驗 95
5-9-1 厭氧與好氧光照下,對數生長後期菌株CH1與CH3添加果糖之生物產氫能力比較 95
5-10 厭氧黑暗下,對數生長後期菌株CH1與CH3添加果糖之生物產氫批次實驗 100
5-10-1 厭氧光照與黑暗下,對數生長後期菌株CH1與CH3添加果糖之生物產氫能力比較 100
第6章 結論與建議 102
6-1 結論 102
6-2 建議 103
參考文獻 104
許偉芬。1998。魚腥藻CH1及CH2氫代謝生理研究。國立中興大學植物學研究所碩士論文。第25~28頁。
許錦龍。1983。念珠藻(Anabaena)固氮作用之生理特性研究。國立中興大學植物研究所碩士論文。第19~22頁。
陳伯中。1986。藻類與能源。藻類之研究與應用研討會論文集。台北。第67~76頁。
陳泰嬌。1994。藍藻Anabaena sp. CH1及CH3在不同氮源下之氮代謝途徑。國立中興大學植物學研究所碩士論文。第14∼70頁。
黃啟穎。1986。藍綠藻固氮作用的生化與生理。藻類之研究與應用。中央研究院植物所。第77~94頁。
經濟部能源委員會。2002。中華民國九十年台灣能源統計報。台北。
蔡幸真。1985。固氮性藍綠藻(念珠藻)生長的氮源需求研究。國立中興大學植物研究所碩士論文。第19~21頁。
Allen, M. B., and Arnon, D. I.: 1955. Studies on nitrogen-fixing blue-freen algae. I. Growth and nitrogen fixation by Anabaena cylindrica LEMM. Plant Physiol. 30: 366~372.
Axellson, R., Oxelfelt, F., and Lindblad, P.: 1999. Transcriptional regulation of Nostoc uptake hydrogenase. FEMS Microbiology Lett. 190: 77~81.
Bacanamwo, M., and Harper, J. E.: 1997. The feedback metabolism of nitrate inhibition of nitrogenase activity in soybean may involve asparagines and/or products of its metabolism. Physiol. Plant. 100: 371~377.
Banemann, J. R., and Weare, N. M.: 1974. Hydrogen evolution by nitrogen-fixing Anabaena cylindrica cultures. Science. 184: 174~175.
Bordin, V. B., Tsygankov, A. A., Rao, K. K., and Hall, D. O.: 2000. Hydrogen pruduction by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnol. and Bioengin. 69: 478~485.
Böhm, I., Halbherr, A., Smaglinski, S., Ernst, A., and Böger, P.: 1992. In vitro activation of binitrogenase reductase from the cyanobacterium Anabaena variabilis ATCC 29413. J. Bacteriol. 174: 6179~6183.
Boogerd, F. C., Vlerken, M. M. A., Mawadza, C., Pronk, A. F., Stouthamer, A. H., and Veraeveld, H. W.: 1994. Nitrogen fixation and hydrogen metabolism in relation to the dissolved oxygen tension in chemstat cultures of the wild type and a hydrogenase-negative mutant of Azorhizobium caulinodans. Appl. Enviro. Microbiol. 60: 1859~1866.
Brass, S., Ernst, A., and Böger, P.: 1992. Induction and modification of dinitrogenase reductase in the unicellular cyanobacterium Synechocystis BO 8402. Arch. Microbiol. 158: 422~428.
Chen, P. C., Almon, H., and Böger, P.: 1989. Physiological factors determining hydrogenase activity in nitrogen-fixing heterocystous cyanobacteria. Plant Physiol. 89: 1035~1038.
Daday, A., Platz, R. A., and Smith G. D.: 1977. Anaerobic and aerobic hydrogen gas formation by the blue green algae Anabaena cylindrica. Appl. Environ. Microbiol. 34: 478~483.
Debabrata, D. and Nejat Veziroglu, T.: 2001. Hydrogen production biological processes: a survey of literature. Int. J. Hydrogen Energy. 26: 13~28.
Dharmawardene, M. W. N., Haystead, A., and W. D. P. Stewart.: 1973. Glutamine synthetases of the nitrogen-fixing alga Anabaena cylindrical. Arch. Mikrobiol. 90: 281~290.
Doyle, C. M., and Arp, D. J.: 1987. Regulation of H2 oxidation activity and hydrogenase protein levels by H2, O2, and carbon substrates in Alcaligenes latus. J. Bacteriol. 169: 4463~4468.
Du, C., and Gallon, J. R.: 1993. Modification of the Fe-protein of the nitrogenase of Gloeothece(Nägeli)sp. ATCC 27152 during growth under alternation light and darkness. New Phytol. 125: 121~129.
Durner, J., BöHm, I., Knörzer, O. C., and Böger, P.: 1996. Proteolytic degradation of denitrogenase reductase from Anabaena variabilise ATCC 29413 as a consequence of ATP depletion and impact of oxygen. J. Bacteriol. 178: 606~610.
Eisbrenner, G., and Evans, H. J.: 1983. Aspect of hydrogen metabolism in nitrogen-fixing legumes and other plant-microbe associations. Ann. Rev. Plant physiol. 34: 105~136.
Fay, P.: 1992. Oxygen relation of nitrogen fixation in cyanobacteria. Microbiol. Rev. 56: 340~373.
Fedorov, A. S., Tsygankov, A. A., Rao, K. K., and Hall, D. O.: 2001. Production of hydrogen by an Anabaena variabilis mutant in a photobioreactor under aerobic outdoor conditions. In J. Miyake, T. Matsunaga, and A. San Pietro (ed.), Biohydrogen II. Elsevier Science Ltd., Oxford, United Kindom. 223~228.
Fernando, A. L. P., Troshina, O., and Lindblad, P.: 2002 A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J. Hydrogen Energy. 27: 1209~1215.
Fogg, G. E.: 1949. Growth and heterocyst production in Anabaena cylindrica Lemm. II. In relation to carbon and nitrogen metabolism. Ann. Bot. 13: 241~259.
Francis, K, Patel, P, Wendt, J. C., and Shanmugam, K. T.: 1990. Purification and characterization of two from of hydrogenase Isoenzyme I from Escherichia coli. J. Bacteriol. 172: 5750~5757.
Friedrich, C. G., Friedrich, B., and Bowien, B.: 1981. Formation of enzyme of autotrophic metabolism during heterotrophic growth of Alcaligenes eutrophus. J. Gen. Microbiol. 122: 69~78.
Gallon, J. R.: 1992. Reconciling the incompatible: N2 fixation and O2. New Phytol. 122: 571~609.
Hahn, D., and Kück, U.: 1994. Biochemical and molecular genetic basis of hydrogenase. Process Biochemistry. 29: 633~644.
Hansel, A., and Lindblad, P.: 1998. Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl. Micribiol. Biotechnol. 55: 153~160.
Haselkorn, R.: 1978. Heterocysts. Annu. Rev. Plant physiol. 29: 319~344.
Haselkorn, R.: 1983. Regulation of heterocyst differentiation in cyanobacteria Anabaena, algae. Microbiol. 170~174.
Helber, J. T., Jouhson, T. R., and Yarbrough, L. R.: 1988. Effect of nitrogenous compounds on nitrogenase gene expression in anaerobic cultures of Anabaena variabilis. J. Bacteriol. 145: 175~180.
Houchins, J. P. and Burris, R. H.: 1981.Physiological reaction of the reversible hydrogenase from Anabaena 7120. Plant Physiol. 68: 717~721.
Imafuku, H., and Katoh, T.: 1976. Intracellular ATP level and light-induced inhibition of respiration in a blue-green alga, Anabaena variabilis. Plant Cell Physiol. 17: 515~524.
Jewell, W. J., and Kulasoriya, S. A.: 1970. The relation of acetylene reduction to heterocyst frequency in blue-green algae. J. Exp. Bot. 21: 881~886.
Keeney, D. R., and Nelson, D. W.: 1982. Indophenol-blue method. Chemical and Microbiological Properties. In: Page, A. L., Miller, R. H., Keeney, D. R. (Eds). Methods of soil analysis part2 (2nd ed.). 674-676.
Khatipov, E., Miyake, M., Miyake, J., and Asada, Y.: 1998. Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiol. Lett. 162: 39~45.
Kim, J., Ito, K., and Takahashi, H.: 1982. Production of molar hydrogen in outer batch cultures of Rhodopseudomona sphaeroide, Agric. Biol. Chem. 46: 937~941.
Kumer, A. P., Perraiu, B. T. V. V., and Singh, H. N.: 1986. Carbon nutrition and the regulation of uptake hydrogenase activity in free-living and symbiotic Anabaena cycadae. New Phytol. 104: 115~120.
Kumar, D., and Kumar, H. D.: 1990. Effects of some inhibitors and carbon sources on acetylene reduction and hydrogen production of isolated heterocysts of Anabaena sp.(strain CA). Br. Phycol. J. 25: 375~379.
Kumar, D., and Kumar, H. D.: 1992. Hydrogen production by several cyanobacteria. Int. J. Hydrogen Energy. 17: 847~852.
Lambert, G. R., and Smith, G. D.: 1977. Hydrogen formation by marine blue-green algae. FEBS Lett. 83: 159~162.
Lambert, G. R., and Smith, G. D.: 1981. The hydrogen metabolism of cyanobacteria(blue-green algae). Biol. Rev. 56: 589~660.
Lichtl, R. R., Michael, J. B., and Dabid, O. Hall.: 1997. The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions. Appl. Microbiol. Biotechnol. 47: 701~707.
Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F., and Tsygankov, A.: 2002. Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. 27: 1271~1281.
Lindblad, P. and Guerrero, M. G.: 1993. Nitrogen fixation and nitrate reduction. In: Hall D, Scurlock JMO, Bolhar-Nordenkampt HR, Leegood RC, Long SP(eds.)Photosynthesis and production in a changing environment. A field and laboratory guide. London. 299~312.
Lindberg, P., Schütz, K., Happe, T., and Lindblad, P.: 2002. A hydrogen-pruducing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133 Int. J. Hydrogen Energy. 27: 1291~1296.
Maier, R. J., and Tripleet, E. W.: 1996. The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions. Appl. Microbiol. Biotechnol. 47: 701~707.
Maier. R. J., Hanus, F. J., and Evans, H. J.: 1979. Regulation of hydrogenase in Rhizobium japonicum. J. Bateriol. 137: 824~829.
Mckee, T., and McKee, J. R.: 1999 Biochemistry: an introduction. 2nd ed. McGraw-Hill Book Co., New York. 329~365.
Merida, A., Candau, P., and Florencio, F. J.: 1991. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechococcus sp. Strain PCC 6301. Planta. 187: 247~253.
Merida, A., Leurentop, L., Candau, P., and Florencio, F. J.: 1990. Purification and properties of glutamine synthetases from the cyanobacterium Syuechocystis sp. Strain PCC 6830 and Calothrix sp. Strain PCC 7601. J. Bacteriol. 172: 4732~4735.
Michael, T. M., John, M. M., and Jack, P.: 2000. Brock Biology of Microorganisms. 9th ed. Prentice-Hall Inc., New Jersey. 524~529.
Ohmori, M., and Hattori, A.: 1974. Effect of ammonia on nitrogen fixation by the blue-green algae Anabaena cylindrical. Plant Cell Physiol. 15: 131~142.
Olsen, G. J., Woese, C. R., and Overbeek, R.: 1994. The winds of (evolutionary) change: Breathing new life into microbiology. J. Bacteriology. 176: 1~6.
Oxelfelt, F., Tamagnini, P., Salema, R., and Lindblad, P.: 1995. Hydrogen uptake in Nostoc strain PCC 73102: effects of nickel, hydrogen, carbon, and nitrogen. Plant Physiol. Biochem. 33: 617~623.
Prabaharan, D., and Subramanian G.: 1996. Oxygen-free hydrogen production by the marine cyanobacterium Phormidium valderianum BDU 20041. Bioresource Technol. 57: 111~116.
Ramos, J. L., Madeno, F., and Guerrero, M. G.: 1985. Regulation of nitrogenase levels in Anabaena sp. ATCC 33047 and other filamentous cyanobacteria. Arch. Microbiol. 141: 105~111.
Ramos, J. L., and Guerrero, M. G.: 1983. Involvement of ammonium metabolism in the nitrate inhibition of nitrogen fixation in Anabaena sp. strain ATCC 33047. Arch. Microbiol. 136: 81~83.
Rao, K. K. and Hall, D. O.: 1996. Hydrogen production by cyanobacteria: potential, problems and prospects. J Mar Biotechnol. 4: 10~15.
Rowell, P., Sampaio, M. J. A. M., Ladha, J. K., and Stewart, W. D. P.: 1979. Alteration of cyanobacterial glutamine synthetase activity in vivo in response to light and NH4+. Arch. Microbiol. 120: 195~200.
Serebryakova, L. T., Sheremetieva, M. E., and Lindblad, P.: 2000. H2-uptake and evolution in the unicellular cyanobacterium Chroococcidiopsis thermalis CALU 758. Plant Physiol. Biochem. 38: 525~530.
Shah, V., Garg, N., and Madamwar, D.: 2001. Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microbiol. Lett. 194: 71~75.
Shih, H. S., Youn, J. H., and Kim, S. H.: 2004. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy. 29: 1355~1363.
Smith, R. L., Van-Baalen C., and Tabita, F. R.: 1990. Control of nitrogenase recovery from oxygen inactivation by ammonia in the cyanobacterium Anabaena sp. Strain CA(ATCC 33047). J. Bacteriol. 172: 2788~2790
Stamm, H., van Verseveld, W., de Vries, W., and Stouthammer, A. H.: 1984. Hydrogen oxidation and efficiency of nitrogen fixation in succinate-limited chemostat cultures of Rhizobium ORS 571. Arch. Microbiol. 139: 53~60.
Stewart, W. D. P., Haystead, A., and Pearson, H. W.: 1969. Nitrogenase activity in heterocyst of blue-green algae. Nature. 224:226~228.
Sveshnikov, D. A., Sveshnikove, N. V., Rao, K. K., and Hall, D. O.: 1997. Hydrogen metabolism of mutant forms of Anabaena variabilis in continous cultures and under nutritional stress. FEMS Microbiol. Lett. 147: 297~301.
Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., and Lindblad, P.: 2002. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Molecular Biology Reviews. 66: 1~20.
Thiel, T., and Leone, M.: 1986. Effect of glutamine on growth and heterocyst differentiation in the cyanobacterium Anabaena variabilis. J. Bacteriol. 168: 769~774.
Tonina, A., F., and Shree, K. A.: 2000. Differential regulation of nitrogenase activity by ionic and osmotic stresses and permeable sugars in the Cyanbacterium Anabaena sp. Strain L-31. Plant Science. 150: 181~189.
Troshina, O., Serebryakove, L., Sheremetieva, M., and Lindblad, P.: 2002. Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int. J. Hydrogen Energy. 27: 1283~1289.
Troshina, O. Y., Larissa, T., Serebryakova, V., and Lindblad, P.: 1996. Induction of H2-Uptake and Nitrogenase Activities in the Cyanobacterium Anabaena variabilis ATCC 29413: Effects of Hydrogen and Organic Substrate. Current Microbiol. 33: 11~15.
Tsygankov A. A., Borodin, V. B., Rao, K. K., and Hall, D. O.: 1999. H2 photoproduction by batch culture of Anabaena variabilis ATCC 29413 and its mutant PK84 in a photobioreactor. Biotechnol. Bioeng. 64: 709~715.
Tsygankov A. A., Serebryakova L. T., and Rao K. K.: 1998. Acetylene reduction and hydrogen photoproduction by wild-type and mutant strains of Anabaena at different CO2 and O2 concentrations. FEMS Microbiol. Lett. 167: 13~17.
Tsygankov, A. A., and Vasilieva, L. G.: 1990. Catabolic repression of hydrogenase synthesis in Ectothiorhodospira shaposhnikovii. FEMS Microbiol. Lett. 67: 171~174.
Tsygankov, A. A., Yakunin, A. F., Gogotov, I. N.: 1982. Hydrogenase activity in Rhodopseudomonas capsulatus growing in organic media. Microbiology﹝Russian﹞. 51: 533~537.
Tsygankov, A. S., Serebryakova, L. T, Sveshinikov, D. A., Rao, K. K., Gogotov, I. N., and Hall, D. O.: 1997. Hydrogen photoproduction by three different nitrogenases in whole cells of Anabaena variabilis and the dependence on pH. Int. J. Hydrogen Energy. 22: 859~867.
Van Ginkel, S., and Sung, S.: 2001. Biohydrogen production as a function of pH and substrate concentration. Enviro. Science Tech. 35: 4726~4730.
Vasilieva, L. G., Tsygankov, A. A., and Gogotov, I. N.: 1988a. Regulation of hydrogenase biosynthesis in Rhodobacter sphaeroides. Microbiology〔Russian〕. 57:5~10.
Vasilieva, L. G., Tsygankov, A. A., and Gogotov, I. N.: 1988b. Role of organic compounds and cAMP in regulation of hydrogenase synthesis in Rhodospirillum rubrum. Reports of Acad Sci USSR. 301: 477~479.
Vignais, P. M., and Toussaint, B.: 1994. Molecular biology of membrane-bound H2 uptake hydrogenases. Arch Microbiol. 161: 1~10.
Vyas, D., and Kumar, H. D.: 1995. Nitrogen fixation and hydrogen uptake in four cyanobacteria. Int. J. Hydrogen Energy. 20: 163~168.
Weissman, J. C., and Banemann, J. R.: 1977. Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Appl. Environ. Microbiol. 33: 123~131.
Wolk, C. P.: 1982. Heterocyst. In “The Biology of Cyanobacteria.”(N. G. Carr and B. A. Whitton eds.)Blackwed Scientific Publications. Oxford, London. 359~386.
Wolk, C. P., Ernst, A., and Elhai, J.: 1994. Heterocyst metabolism and development. In: The molecular biology of cyanobacteria. Bryant, D.A.(ed)Kluwer Academic Publishers. 769~823.
Zajic, J. E., Kosaric, N., and Brosseau, J. D.: 1978. Microbial production of hydrogen. Adv. Biochem. Eng. 9: 57~109.
Zorin, N. A., and Lindblad, P.: 1993. Licalization of hydrogenase in the purple sulphur bacterium Thiocapsa roseopersicina. Arch. Microbiol. 160: 96~100.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top