跳到主要內容

臺灣博碩士論文加值系統

(44.192.15.251) 您好!臺灣時間:2024/02/25 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邵志偉
研究生(外文):Chih Wei Shao
論文名稱:以微波帶通濾波器之設計基礎研製射頻微機電帶通濾波器
論文名稱(外文):The Research of RF MEMS Bandpass Filter on the basis of the Microwave Bandpass Filter
指導教授:潘吉祥潘吉祥引用關係洪瑞華
指導教授(外文):Chi Hsiang PanRay-Hua Horng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:140
中文關鍵詞:帶通濾波器微機電低通濾波器步階式阻抗雙工器缺陷地平面式面型微加工技術體型微加工技術
外文關鍵詞:Bandpass FilterMEMSLowpass FilterStepped Impedance ResonatorDiplexerDefect Ground Structuresurface micromachining technologybulk micromachining technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本篇論文主要是應用微機電製程之特性與方法設計射頻微機電帶通濾波器。首先,利用玻璃纖維板設計各種不同種類之帶通濾波器(Bandpass Filter)或低通濾波器(Lowpass Filter),以觀察濾波器之差入損失(Insertion Loss)及返回損失(Return Loss)與基板之特性關聯。其次,以抑制二次、三次諧波為研究重點,設計各種新式帶通濾波器,其中含步階式阻抗帶通濾波器(Stepped Impedance Resonator Bandpass Filter)、步階式阻抗雙工器帶通濾波器(Stepped Impedance Resonator Diplexer Bandpass Filter)、雙層式步階式阻抗帶通濾波器(Multilayer Stepped Impedance Resonator Bandpass Filter )、缺陷地平面式低通濾波器(Defect Ground Structure)等,並於各種不同厚度之基板上實現。
接下來,我們利用微機電之製程技術,設計一中心頻率為30GHz之平行耦合式和雙模態式帶通濾波器並實做於矽基板之上。由於微機電之微遮蔽線相對於傳統傳輸線如微帶線、共面波導等,有許多優點如低介質及輻射損耗、低色散等。本論文以微遮蔽線為基礎結構利用微機電技術來完成帶通濾波器之研製。首先利用微機電之面型微加工技術定義濾波器之圖形,再加以微機電之體型微加工蝕刻矽基板使濾波器懸浮於空氣中,以降低濾波器之差入損失。此處選擇了微遮蔽線為傳輸架構,囿於矽晶格排列及半導體製程之限制,微遮蔽線橫截面為一梯形,其特徵阻抗則可以利用準靜態假設得出精確之特徵阻抗。最後利用微機電技術製作此微遮蔽線平行耦合式及雙模態式帶通濾波器,證實本論文所提出之設計與製作此平行耦合式及雙模態式帶通濾波器的可行性與正確性。
Abstract
This thesis focuses on the design and analysis of MEMS bandpass filter by micromachine technology. The first research, design and analysis many different bandpass filters and lowpass filters by FR4 GD substrate for observe insertion loss and return loss of filters. The second research, to design many different bandpass filters and low passfilters for suppress second or third spurious response. The designed filters include: Stepped Impedance Resonator Bandpass Filter、Stepped Impedance Resonator Diplexer Bandpass Filter、Multilayer Stepped Impedance Resonator Bandpass Filter、Defect Ground Structure etc. Compared to traditional planar transmission lines such as microstrip, and coplanar waveguide, the microshield line allows single modes, TEM wave propagation with low dielectric loss, low radiation loss, and almost zero dispersion with air dielectric. In this master''s degree, the design of microwave parallel bandpass filter and dual mode bandpass filter are base on microshield line and accomplished by silicon micromachining technology. The first, using surface micromachining technology to define the bandpass filter pattern, the second, using bulk micromachining technology to etch silicon wafer to from the bandpass filter suspension in the air. The microshield line is chosen as the transmission line, which is formed by etching in <111> direction of <100>silicon wafer and is in a trapezoidal cross sectional shape. For which, the characteristic impedance is calculated by employing commercial software based on the quasi TEM assumption. Finally, The microwave parallel and dual mode bandpass filter in Ka-band are fabricated by the micromachining process.
Contents
誌謝 i
摘要 iii
Abstract v
Contents vii
Chapter 1
Introduction 1
1.1 Research Motives 1
1.2 Literature Survey 2
1.3 Chapter Outline 3
1.4 Contributions 4
Chapter 2
The Fundamental of Microwave Theory 6
2.1 Filter Design by the Insertion Loss Method 6
2.2 Fitler transformations 21
2.3 Filter Implementation 29
Chapter 3
The Design of Stepped Impedance Resonator Bandpass Filter 34
3.1 Microstrip SIR Bandpass Filter with Over Coupling for Suppression of Harmonic Response 34
3.2 Microstrip Bandpass Filters with Over-Coupling Structures and Continuous Stepped Impedance Resonators and Diplexer 52
3.3 Continuous Stepped Impedance Reasonator Bandpass Filter Using Multilayer Structure 64
Chapter 4
The Design of Defect Ground Structure Bandpass Filter 71
4.1 A Novel 1-D Periodic Element for Planar Circuit by Using Defect Ground Structure 71
4.2 Improved Performance of Stepped Impedance Resonator Lowpass Filter by Using Defect Ground Structure 86
4.3 Spurious Suppression of Parallel coupling Bandpass filter by Defect Ground Structure 96
Chapter 5
The Design of MEMS Bandpass Filter 104
5.1 The Introduction MEMS Technology 104
5.2 The Fundamental of MEMS Process 105
5.3 Design And Theory of MEMS Bandpass Filter 111
5.4 Micromachining Process for Bandpass Filter 120
5.5 MEMS Bandpass Filter Fabrication Process 131
Chapter 6
Conclusion 136
6.1 Conclusion 136
Reference 137
Reference
[1] D. M. Pozar, Microwave Engineering. CH.8, John Wiley & Sons, Inc., 1998, Ch.8.
[2] S. B. Cohn, Parallel coupled transmission-line-resonator filters, IRE Trans. Microwave Theory Tech., vol. MTT-6 (1958), 223-231.
[3] M. Makimoto and S. Yamashita, Bandpass Filters Using Parallel Coupled StripLine Stepped Impedance Resonators, IEEE Trans, Microwave Theory Tech, MTT-28, (1980), 1413-1417.
[4] H. K. Yoon, Y. J. Yoon, J. H. Park and S. Y. Lee, Hairpin-line/half-wave parallel-coupled-line narrowband bandpass filters using high temperature superconducting thin films, IEEE Trans. Superconductivity 9 (1999), 3901—3904.
[5] M. mastsuo, H. Yabuki, and M. Makimoto, The design of a half-wavelength resonator BPF with attenuation poles at desired frequencies, in IEEE MTT-S Int. Microwave Symp. Dig. (2000), 1181-1184.
[6] M. Sagawa, H. Shirai, and M. Makimoto, Bandpass filters using microstrip linear tapered transmission lines resonators, IEICE Trans E76-C (1993), 985—992.
[7] G. L. Matthaei, L. Young, and E. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures. New York; McGraw-Hill, 1964.
[8] C. P. Womack, The use of exponential transmission lines in microwave components, IRE Trans. Microwave Theory., vol. MTT-10, pp. 124-132, Mar. 1962.
[9] M. Makimoto and S. Yamashita, Compact bandpass filters using stepped impedance resonators, Proc. IEEE, vol. 67, pp. 16-19, Jan. 1979.
[10] Jen-Tsai Kuo and Eric Shih, Stepped Impedance Resonator Bandpass Filters with Tunable Transmission Zeros and Its Application to Wide Stopband Design, in the 2002 IEEE MTT-S Dig., pp.1613-1616.
[11] Min-Hung Weng, Chi-Shiang Pan, Chih-Wei Shao, Tsung-Hui-Huang, Hung-Wei Wu, Microstrip Stepped Impedance Resonator Bandpass Filters with Over-Coupling Structure For Suppression of Harmonic Response, to be appeared to Microwave & Opt. Tech. Lett, April 20, 2004.
[12] H. C. Chang, C. C. Yeh, W. C. Ku and K. C. Tao, A multilayer bandpass filter integrated into RF module board, in IEEE MTT-S Int. Microwave symp. Dig., vol. 2, pp. 619-622, Jun. 1996.
[13] C. M. Tsai, S. Y. Lee, and C. C. Tasi, Hairpin filters with tunable transmission zeros, in IEEE MTT-S Int. Microwave Sym. Dig., Vol. 3 (2001), 2175-2178.
[14] T. J. Ellis and G. M. Rebeiz, “MM-wave tapered slot antennas on micromashined photonic bandgap dielectrics,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1157—1160, June 1996.
[15] M. P. Kesler, J. G. Maloney, and B. L. Shirley, “Antenna design with the use of photonic bandgap material as all dielectric planar reflectors,” Microw. Opt. Tech. Lett., vol. 11, no. 4, pp. 169—174, Mar. 1996.
[16] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic
bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett., vol. 8, no. 2, pp. 69—71, Feb. 1998.
[17] Y. Qian, V. Radisic, and T. Itoh, “Simulation and experiment of photonic bandgap structures for microstrip circuits,” Proc. APMC’97, pp. 585—588, Dec. 1997.
[18] D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt., vol. 3, no. 6, pp. 975—993, Nov. 1994.
[19] J. L. Park, C. S. Kim, J. Kim, J. S. Park, Y. Qian, D. Ahn, and T. Itoh, “Modeling of a photonic bandgap and its application for the low-pass filter design,” Proc. APMC’99, pp. 331—334, Dec. 1999.
[20] J. L. Park, C. S. Kim, J. Kim, J. S. Park, Y. Qian, D. Ahn, and T. Itoh,“Modeling of a photonic bandgap and its application for the low-pass filter design,” Proc. APMC’99, pp. 331—334, Dec. 1999.
[21] D. Ahn, J. S. Park, C. S. Kim, Y. Qian, and T. Itoh, “A design of the low-pass filter using the novel microstrip defected ground structure,”IEEE Trans. Microwave Theory Tech., vol. 49, pp. 86—93, Jan. 2001.
[22] C. S. Kim, J. S. Park, D. Ahn, and J. B. Lim, “A novel one dimensional periodic defected ground structure for planar circuits,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 131—133, Apr. 2000.
[23] Jun-Seok Park, Jae-Ho Kim, Jong-Hun Lee, Sang-Hyuk Kim, Sung-Ho Myung, “A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter,” IEEE MTT-S Int. Microwave
[24] Jen-Tsai Kuo, Sin-Ping Chen, Meshon Jiang, ”Parallel-Coupled Microstrip Filters With Over-Coupled End Stages for Suppression of Spurious Responses,” IEEE Microwave and Wireless Components Lett ,vol. pp. 440—442, Oct. 2003.
[25] M. Madou, Fundamentals of Microfabrication. CRC Press, Boca Raton New York, 1997, Ch4.
[26] P. A. Rizzi, Microwave Engineering: Passive Element. Prentice Hall, Englewood Cliffs, New Jersey, 1988, Ch.9.
[27] R. F. Drayton and L. P. B. Katehi, “Development of self-packaged high frequency circuits using micromachining techniques,” IEEE Trans. Microwave Theory Tech, vol. 43, no. 9, pp. 2073-2080, Sept, 1995.
[28] C. Y. Chi, and G. M. Rebeiz, “A low loss 20 GHz bandpass filter,” in 1995 IEEE MTT-S Dig. pp. 1531-1534.
[29] T. M. Weller, L. P. Kathei, and G. M. Rebeiz, “High performance microshield line components,” IEEE Trans. Microwave Theory Tech, vol.43, no. 3, pp. 534-543,
Mar. 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 楊龍立(民84)。國小社會與自然課程的統整。人文及社會學科教學通訊,6(1),
2. 楊國賜(民76)。現代教師如何建立專業知能與地位。師友月刊,241,1-2。
3. 陳伯璋(民88)。九年一貫新課程綱要修訂的背景及內涵。教育研究資訊,7(1),1-13
4. 張春興(民85)。在應用科學基礎上建立教育心理學的獨立體系。教育心理學報,
5. 彭富源(民90)。從國民教育課程與教學改革方向談師資教育。教師天地,110,58
6. 莊嘉坤(民81)。從科學的概念談科學態度的研究。國教天地,94,31-43。
7. 莊嘉坤(民80)。科學態度的評量。國教天地,90,76-86。
8. 洪文東(民85)。科學的本質。屏師科學教育,3,2-9。
9. 高強華(民82)。論信念的意義、結構與特性。現代教育,30,74-89。
10. 孫耀永(民87)。教師知識之概念分析。教師之友,39(4),29-38。
11. 林樹聲(民88)。科學素養的省思。科學教育(師大),222,16-26。
12. 林清江(民87)。與教師一起進行教育改革。人文及社會學科教學通訊,26,4 (9),
13. 李文仰(民86)。提昇「教師專業」增進教學效能之我見。教育資料與研究,10,
14. 李田英。(民81):國小職前教師基本自然科學知識及自然科教學態度之研究。師大學報,37,529-577。
15. 王恭志(民89)。教師教學信念與教學實務之探析。教育研究資訊,8(2),84-