跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁曉蘋
研究生(外文):Hsiao-Ping Liang
論文名稱:以液晶為主動覆層之可調式光補/取多工元件之研究
論文名稱(外文):A Design of Tunable Optical Add/Drop Multiplexer with Liquid Crystal as The Active Layer
指導教授:楊錫杭莊為群
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:可調式光補/取多工元件非對稱布拉格耦合器高密度分波多工器
相關次數:
  • 被引用被引用:1
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
本文主要提出一新型可調式積體光學光補/取多工元件,針對其元件特性作一設計並模擬。而元件設計是以非對稱布拉格耦合器(Asymmetric Bragg Coupler, ABC)架構為基礎,進而設計可對單一波長同時進行光補/取之元件,並在基板中灌注液晶為主動覆層,及在基板上下各加電極板。以外加電壓控制液晶晶體軸向,使波導之等效折射率隨電場變化。本文以OG系列高分子波導、高分子覆層、液晶覆層、玻璃基板為設計參數,並在波長固定補/取時建立最佳條件,修正耦合方程,以提高精確度;亦提出了液晶在電場的極化下,分子同時受二垂直方向的wall alignment effect而變化的數學模型,以適用此一新型光補/取元件結構。
此元件除了可改進其應用在光纖光柵時的缺點外,亦可在小範圍中調整選擇波長,是為一Tunable OADM ,具有結構簡單、成本低廉等優點。其中,液晶調整波長在1549.15~1551.15nm之間,即250GHz,可得到add及drop最佳操作。
目錄
第一章 緒論……………………………………………….. 1
1.1 前言……………………………………………………….. 1
1.2 研究目的及方法………………………………………….. 5
1.3 論文架構………………………………………………….. 6
第二章 光波導之模態場理論…………………………….. 7
2.1 波動方程式-微分方程式………………………………. 7
2.2 波導傳播模態解析法…………………………………….. 11
2.2.1 超越函數………………………………………………….. 11
2.2.2 有限差分法……………………………………………….. 14
2.2.2.1 波動方程式-差分方程………………………………….. 15
2.2.2.2 特徵值與特徵向量問題…………………………………. 16
2.2.3 等效折射率法……………………………………………. 19
2.2.4 正規化電場解析…………………………………………. 21
第三章 模態耦合理論分析……………………………….. 24
3.1 應用在OADM之耦合方法簡介………………………… 24
3.2 模態耦合理論分析……………………………………….. 25
3.3 耦合方程修正前後之比較結果………………………….. 32
第四章 液晶之電場調變理論分析……………………………….. 34
4.1 液晶簡介………………………………………………….. 34
4.1.1 液晶的分類……………………………………………….. 35
4.1.2 液晶的光電特性………………………………………….. 37
4.2 液晶的彈性連續體理論………………………………….. 39
4.2.1 Eular Lagrange’s 方程…………………………………… 40
4.2.2 轉換層厚度(transition layer thickness)推導…………….. 42
第五章 模擬結果與分析………………………………….. 45
5.1 利用等效折射率法解模態……………………………….. 45
5.2 波長選擇特性分析……………………………………….. 48
第六章 結論……………………………………………….. 51
參考文獻 …………………………………………………….. 53
附表…………………………………………………………… 60
附圖……………………………………………………………
參考文獻
第一章
[1] D. Cavendish, “Evolution of Optical Transport Technologies: From SONET/SDH to WDM,” IEEE, Communications Magazine, vol. 38, pp. 164-172, 2000.
[2] S.V. Kartalopoulos, DWDM, John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A., 2003.
[3] M. Vailyev, I. Tomkos, M. Mehendale, J.K. Rhee, A. Kobyakov, M. Ajgaonkar, S. Tsuda, and M. Sharma, “Transparent Ultra-Long-Haul DWDM Networks With Broadcast-and-Select OADM/OXC Architecture,” IEEE, Journal of Lightwave Technology, vol. 21, pp. 2661-2672, 2003.
[4] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication,” Applied Physics Letter, vol. 32, pp. 647-649, 1978.
[5] C. Hu, S. M. Yang, Y. C. Wang, J. S. Wu, and Y. Lai, “Passive Thermal-Packaged Tunable Fiber Bagg Grating for OADM’s,” IEEE, Lasers and Electro-Optics, Pacific Rim 2001, vol. 1, pp. I-408-I-409 vol.1 2001.
[6] L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A. Norwood, “Thermooptic Planar Polymer Bragg Grating OADM’s with Broad Tuning Range”, IEEE, Photonics Technology Letters, vol. 11, pp.448-450, 1999.
[7] W. Warzanski, F. Heismann, and R. C. Alferness, “Polarization-Independent Electrooptically Tunable Narrow-Band Wavelength filter,” Applied Physics Letter, vol. 53, pp. 13-15, 1988.
[8] H. Hermann, K. Schafer, and C. Schmidt, “Low Loss Tunable Integrated Acoustioptical Wavelength Filter in LiNbO3 with Strong Sidelobe Suppression,” IEEE, Photonics Technology Letters, vol. 10, pp. 120-22, 1998.
[9] P. Tang, O. Eknoyan, and H.F. Taylor, “Rapidly Tunable Optical Add-Drop Multiplexer(OADM) Using a Static-Strain-Induced Grating in LiNbO3,” Journal of Lightwave Technology, vol. 21, pp. 236-245, 2003.
[10] H. Miyata, Y. Kaito, Y. Kai, H. Onaka, T. Nakazawa, M. Doi, M. Seino, T. Chikama, Y. Kotaki, K. Wakao, M. Komiyama, T. Kunikane, H. Yonetani, and Y. Sakai, “Fully Dynamic and Reconfigurable Optical Add/Drop Multiplexer on 0.8nm Channel Spacing using AOTF and 32-Wave Tunable LD Module,” Optical Fiber Communication Conference, vol. 4, pp. 287-289, 2000.
[11] T. Erdogan, T.A. Strasser, M.A. Milbrodt, E.J. Laskowski, C.H. Henry, G.E. Kohnke, “Integrated-Optical Mach-Zehnder Odd-Drop Filter Fabricated by a using UV-Induced Grating Exposure,” Applied Optics, Vol.36, pp.7838-7845, 1997.
[12] C.H. Yoon, H. Kim, and J.D. Shin, “A Tunable Optical Add/Drop Multiplexer using a Fiber-Optic Tapped Delay-Line Transversal Filter,” IEEE, Lasers and Electro-Optics, Pacific Rim’99, vol.3, pp. 785-786, 1999.
[13] H.J. Deuling, “Deformation of Nematic Liquid Crystals in an Electric Field,” Molecular Crystals and Liquid Crystals, vol 19, pp. 123-131, 1972.
[14] F. J. Kahn, “Orientation of Liquid Crystals by Surface Coupling Agents,” Applied Physics Letter, vol. 22, pp. 386-388, 1973.
第二章
[1] D.K. Cheng, Fundamentals of Engineering Electromagnetics, Addison-Wesley Publishing Company, 1993.
[2] H. Nishihara, Masamitsu Haruna and Toshiaki Suhara, Optical Integrated Circuits, McGraw-Hill Company, Inc., 2001.
[3] D.G. Zill, M.R. Cullen, Differential Equations with Boundary-Value Problems, Brooks/Cole, 2001.
[4] R. G. Hunsperger, Integrated Optics: Theory and Technology, 開發圖書, 1985.
第三章
[1] T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Optics Communications, Vol. 157, pp. 249-264, 1997.
[2] F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An All-Fiber-Dense-Wavelength-Division Multiplexer/Demultiplexer Using Photoimprinted Bragg Gratings,” IEEE Photonics Technology Letter, vol. 7, pp. 388-390, 1995.
[3] P. Yeh, H. F. Taylor, “Contradirectional Frequency-Selective Couplers For Guided-Wave Optics,” Applied Optics, vol. 19, pp. 2748-2855,1980.
[4] R. R. A Syms, “Optical Dielectric Coupler with a Grating Overly,” Applied Optics, vol. 24, pp. 717-726, 1985.
[5] J.-L, Archambault, P.St.J. Russell, S. Barcelos, P. Hua, L. Reekie, “Grating-Frustrated Coupler: A Novel Channel-Dropping Filter in Single-Mode optical Fiber,” Optics Letters, vol. 19, pp. 180-182, 1994.
[6] H. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circuits, McGraw-Hill Company, Inc., 2001.
[7] D. Marchse, Theory of Dielectric Optical Waveguides, 2nd ed., AT&T, 1991.
第四章
[1]松本正一,角田市良, 液晶之基礎與應用, 國立編譯館,1996.
[2] I. C. Khoo and S. H. Wu, Optics and Nonlinear Optics of Liquid Crystals, World Scientific, 1993.
[3] P.J. Collings, Liquid Crystal:Nature’s Delicate Phase of Matter, Princeton University Press, Princeton, 1990.
[4] B. Bahadur, Liquid Crystal Applications and Uses Vol. 1, World Scientific, 1990.
[5] G.Vertogen, W. H. de Jet, Thermotropic Liquid Crystal, Fundamentals, Springer-Verlag , New York , 1988 .
[6] 陳連春譯, 最新液晶應用技術, 建興出版社, 第一章, 民國86 年
[7] G. W. Gray, J. W. Goodby, Smectic Liquid Crystals-Textures and Structures, Leonard Hill, London, 1984.
[8] B. Bahadur, Liquid Crystals Applications And Uses Vol. 2, World Scientific, 1990.
[9] P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, 1995.
[10] H.J. Deuling, “Deformation of Nematic Liquid Crystals in an Electric Field,” Molecular Crystals and Liquid Crystals, vol. 19, pp. 123-131, 1972.
[11] F. J. Kahn, “Orientation of Liquid Crystals by surface coupling agents,” Applied Physics Letter, vol. 22, pp. 386-388, 1973.
[12] C. Hu and J.R. Whinnery, “Field-Realigned Nematic-Liquid-Crystal Optical Waveguides, IEEE Journal of Quantum Electronics, vol. QE-10, pp. 556-562, 1974.
第五章
[1] 張智星, MATLAB程式設計與應用, 清蔚科技出版事業部, 2000.
[2] G. Lindfield, J. Penny, Numerical Methods using MATLAB, Prentice Hall, 2000.
[3] 蒙以正, MATLAB專業的設計技巧, 碁峰資訊, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top