|
[1] J. Singh, “Optoelectronics An Introduction to Materials and Devices,” Mc Graw Hill, pp. 237, 1996. [2] J. Singh, “Optoelectronics An Introduction to Materials and Devices,” Mc Graw Hill, pp. 295, 1996. [3] P. Aigrain(1958), as reported in proc. conf., Quantum Electron. Pairs, pp. 1762, 1963. [4] Javan, A. W. R. Bennett. Jr., and D. R. Herriot, Phys.Rev.Lett., pp. 106, 1961. [5] C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE Journal on Selected Topics in Quantum Electronics, Vol. 6, pp. 978, 2000. [6] M. Y. Li, W. Yuen, G. S. Li, and C. J. Chang-Hasnain, “Top-emitting Micromechanical VCSEL With A 31.6-nm Tuning Range,” IEEE Phonics Technlogy Latters, Vol. 10, pp. 18, 1998. [7] E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., Vol. 31, pp. 1671, 1995. [8] F. Sugihwo, M. Larson, and J. S. Harris, Jr., “Micromachined Widely Tunable Vertical Cavity Laser Diodes,” IEEE J. Microelectromech. Syst., Vol. 7, pp. 48, 1998. [9] F. Sugihwo, M. Larson, and J. S. Harris, Jr., “Simultaneous Optimization of Membrane Reflectance and Tuning Voltage for Tunable Vertical Cavity Lasers,” Appl. Phys. Letts., Vol. 72, pp. 10, 1998. [10] F. Sugihwo, C.-C. Lin, J.-C. Bouteiller, M. Larson, and J. S. Harris, Jr., “Micromachined Tunable Vertical Cavity Lasers as Wavelength Selective Tunable Photodetectors,” Proceedings of International Symposium on Compound Semiconductors, San Diego, CA, pp. 561, 1997. [11] F. Sugihwo, M. Larson, and J. S. Harris, Jr., “Low Threshold Continuously Tunable Vertical-Cavity Surface-Emitting Lasers with 19.1 nm Wavelength Range,” Appl. Phys. Letts., Vol. 70, pp. 547, 1997. [12] M. Larson, F. Sugihwo, A. Massengale, and J. S. Harris, Jr., ” Micromachined Tunable Vertical-Cavity Surface-Emitting Lasers” Proceedings of International Electron Device Meetings, San Francisco, CA, pp. 90, 1996. [13] L. H. Laih, L. W. Laih, W. J. Ho, H. Y. Chen, M. C. Wu, Y. L. Huang, and G. C. Chi, “Dimensional characteristics of 850nm VCSEL,” IEDMS, pp. 34, 2000. [14] R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850nm wavelength GaAs VCSELs,” Electronics Lett., Vol. 33, pp. 330, 1997. [15] A. H. Van Vechten, “Examination of the model for Zn diffusion InGaAs,” J.Appl.Phys., Vol. 54, pp. 5055, 1982. [16] H. H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion induced disorder in AlAs/GaAs superlattices,” Semiconductor Technology, Vol.14, pp. 841, 1989. [17] 方維倫, “微機電系統技術與應用,” 精密儀器發展中心行政院家科學委員會, 台北, 台灣, pp. 614, 2003. [18] S. Nagasawa, H. Tsuge, Y. Wada, “Planarization Technology for Josephson Intefrated Circuits,” IEEE Electron Device Letters, Vol. 9, pp. 414, 1988. [19] S. Fujii, M. Fukumoto, G. Fuse, T. Ohzone, “A Planarization Technology Using a Bias-Deposited Dielectric Film and an Etch-Back Process,” IEEE Transactions on Electron Device, Vol. 35, pp. 1829, 1998. [20] A. Muller, R. Rizescu, I. Petrini, V. Avramescu, A. Corici, F. Craciunoiu, “Planarization Technology in GaAs Processing,” ICCE, Institute of Microtechnology-Bucharest, Romania, pp. 313, 1995. [21] 張勁燕,“電子材料,”五南圖書有限公司,台北,台灣,pp. 91, 2000. [22] 莊達人, “VLSI製造技術,” 高立圖書有限公司, pp. 199, 1995. [23] S. M. Sze, “Semiconductor devices Physics and technology,” John Wiley, pp. 544, 1997.
|