跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/04 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴光佑
研究生(外文):Kuang-Yu Tai
論文名稱:以靜電式懸浮鏡面研製可調波長面射型雷射
論文名稱(外文):Fabrication of VCSELs with Tunable Wavelength by Electrostatic Suspended Mirror Structure
指導教授:洪瑞華
指導教授(外文):Ray-Hua Hrong
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:85
中文關鍵詞:垂直共振腔面射型雷射微機電製程技術懸浮鏡面蝕刻平台製程介電質材料
外文關鍵詞:Vertical-cavity surface emitting laserMEMSSuspended mirrorEtched-MesaDielectric material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光纖資料通訊(Optic Fiber Data Communication)因為網路通訊之發達已日趨重要,而光纖通訊所需要的光源(Optical Source)更是重要的一環。其中,垂直共振腔面射型雷射(Vertical Cavity Surface Emitting Laser, VCSEL)近年來發展迅速,自1999年以來,由於光纖通訊日趨其重要性地位,大流量之通訊需求,其主動元件可調波長之雷射應運而生。本論文係以微機電製程技術(MEMS)將Fabry-Perot鏡面製作成懸浮鏡面(Suspended Mirror),並且選擇適當之材料與方式做表面平坦化(Planarization),其後選擇適當之材料作為元件之犧牲層(Sacrificial Layer)以及蝕刻阻擋層(Etching Stop Layer),並加以評估其可行性,最後將其應用在VCSEL元件上。在懸浮鏡面上施予一外加偏壓,使結構產生靜電吸引力來調變共振腔長度,以達波長調變之效果。元件製作部份採兩個方向進行,大面積(Board Area, BA)製程與蝕刻平台(Etched Mesa)製程,此目的在於驗證結構建立的可行性以及特性之差異。於元件特性部分,當我們給予懸浮鏡面最大偏壓80V時,波長中心由608 nm位移至598 nm,可以獲得最大的波長調變範圍為10 nm。
Optical source is of great interest in the application of the optic fiber data communication. Recently, vertical cavity surface emitting laser is opening up new opportunities for laser application, and has been commercialized and used for the application of data communication. Since 1999, tunable lasers are recognized as a highly desirable component used to increase the bandwidth of data communication. In this report, we fabricated by the fabrication of VCSELs process and selected the applicable materials to planarization, sacrificial layer and etching stop layer materials.Finally, we fabricated the suspended mirror on optical device and designed a Fabry-Perot suspended mirror on VCSEL by MEMS process that were modulated electrostatically by applying a bias between the membrane and cavity,which will be tuned light wavelength by reducing the air gap thickness. Our devices are fabricated by Board-Area process and Etched-Mesa process that to test and verify the practicable structure and compare with different characteristics between two processes. The central wavelength shifts continuously from 608 nm to 598 nm with applied voltage at 80V. Therefore, we could gain 10 nm tuning range from 0V to 80V.
授權書……..………………………………………...………………….iv
中文摘要…..…….…..…………………………….…………….……...v
Abstract ..………………………………………………….……………vi
誌謝……………………………………………………………...…..…vii
目錄………………………………………………………………...….viii
圖目錄……………………………………………….….…………..…..x
第一章 緒論…………………………………………………………...1
1.1 前言………………….……………………………..………….1
1.2 VCSEL簡介…………………………………………………...2
1.2.1 VCSEL的主要結構…………………………….………2
1.2.2 VCSEL的工作原理………………………………..…...3
1.2.3 VCSEL的製作………………………………..…...........4
1.3 論文動機………………….……………………………..…….6
第二章 Tunable VCSEL的原理與結構評估
2.1 Tunable VCSEL的操作原理……………………………..…..8
2.2 靜電式吸附原理……………………………………………..10
2.3 表面平坦化…………………………………………………..11
2.4 犧牲層的種類與考量………………………………………..13
第三章 實驗
3.1犧牲層的建立..………….……………………………………15
3.2元件表面平坦化………………..…….………………………18
3.3 元件製程…………………………………………………......20
3.3.1 晶片清洗……………………………………………...20
3.3.2 大面積(Board Area, BA)製程……………..…………20
3.3.3 蝕刻平台(Etched Mesa)製程……………..………….22
第四章 結果與討論
4.1 表面平坦化……….….………………………………………25
4.1.1 黃光對準剝離…………...……………………………26
4.1.2 氧電漿乾式蝕刻…………………………...................26
4.1.3 表面拋光…………………………...............................27
4.2 保護層…………………….….………………………………28
4.3 犧牲層之建立…….………………………………………….29
4.3.1 二氧化矽犧牲層材料………………………………...29
4.3.2 聚合物犧牲層材料…………………………………...29
4.3.3 金屬鋁犧牲層材料…………………………………...30
4.4 鏡面設計…….……………………………………………….31
4.5 元件製作結果與討論…….………………………………….32
4.5.1 BA製程結果之探討………………………………......32
4.5.2 蝕刻平台製程結果之探討…………………………...34
4.6 元件L-I-V量測結果…….…………………………………...36
第五章 結論 …………………….…………………………………. 37
參考文獻……………………………………………………………….39
[1] J. Singh, “Optoelectronics An Introduction to Materials and Devices,” Mc Graw Hill, pp. 237, 1996.
[2] J. Singh, “Optoelectronics An Introduction to Materials and Devices,” Mc Graw Hill, pp. 295, 1996.
[3] P. Aigrain(1958), as reported in proc. conf., Quantum Electron. Pairs, pp. 1762, 1963.
[4] Javan, A. W. R. Bennett. Jr., and D. R. Herriot, Phys.Rev.Lett., pp. 106, 1961.
[5] C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE Journal on Selected Topics in Quantum Electronics, Vol. 6, pp. 978, 2000.
[6] M. Y. Li, W. Yuen, G. S. Li, and C. J. Chang-Hasnain, “Top-emitting Micromechanical VCSEL With A 31.6-nm Tuning Range,” IEEE Phonics Technlogy Latters, Vol. 10, pp. 18, 1998.
[7] E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., Vol. 31, pp. 1671, 1995.
[8] F. Sugihwo, M. Larson, and J. S. Harris, Jr., “Micromachined Widely Tunable Vertical Cavity Laser Diodes,” IEEE J. Microelectromech. Syst., Vol. 7, pp. 48, 1998.
[9] F. Sugihwo, M. Larson, and J. S. Harris, Jr., “Simultaneous Optimization of Membrane Reflectance and Tuning Voltage for Tunable Vertical Cavity Lasers,” Appl. Phys. Letts., Vol. 72, pp. 10, 1998.
[10] F. Sugihwo, C.-C. Lin, J.-C. Bouteiller, M. Larson, and J. S. Harris, Jr., “Micromachined Tunable Vertical Cavity Lasers as Wavelength Selective Tunable Photodetectors,” Proceedings of International Symposium on Compound Semiconductors, San Diego, CA, pp. 561, 1997.
[11] F. Sugihwo, M. Larson, and J. S. Harris, Jr., “Low Threshold Continuously Tunable Vertical-Cavity Surface-Emitting Lasers with 19.1 nm Wavelength Range,” Appl. Phys. Letts., Vol. 70, pp. 547, 1997.
[12] M. Larson, F. Sugihwo, A. Massengale, and J. S. Harris, Jr., ” Micromachined Tunable Vertical-Cavity Surface-Emitting Lasers” Proceedings of International Electron Device Meetings, San Francisco, CA, pp. 90, 1996.
[13] L. H. Laih, L. W. Laih, W. J. Ho, H. Y. Chen, M. C. Wu, Y. L. Huang, and G. C. Chi, “Dimensional characteristics of 850nm VCSEL,” IEDMS, pp. 34, 2000.
[14] R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850nm wavelength GaAs VCSELs,” Electronics Lett., Vol. 33, pp. 330, 1997.
[15] A. H. Van Vechten, “Examination of the model for Zn diffusion InGaAs,” J.Appl.Phys., Vol. 54, pp. 5055, 1982.
[16] H. H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion induced disorder in AlAs/GaAs superlattices,” Semiconductor Technology, Vol.14, pp. 841, 1989.
[17] 方維倫, “微機電系統技術與應用,” 精密儀器發展中心行政院家科學委員會, 台北, 台灣, pp. 614, 2003.
[18] S. Nagasawa, H. Tsuge, Y. Wada, “Planarization Technology for Josephson Intefrated Circuits,” IEEE Electron Device Letters, Vol. 9, pp. 414, 1988.
[19] S. Fujii, M. Fukumoto, G. Fuse, T. Ohzone, “A Planarization Technology Using a Bias-Deposited Dielectric Film and an Etch-Back Process,” IEEE Transactions on Electron Device, Vol. 35, pp. 1829, 1998.
[20] A. Muller, R. Rizescu, I. Petrini, V. Avramescu, A. Corici, F. Craciunoiu, “Planarization Technology in GaAs Processing,” ICCE, Institute of Microtechnology-Bucharest, Romania, pp. 313, 1995.
[21] 張勁燕,“電子材料,”五南圖書有限公司,台北,台灣,pp. 91, 2000.
[22] 莊達人, “VLSI製造技術,” 高立圖書有限公司, pp. 199, 1995.
[23] S. M. Sze, “Semiconductor devices Physics and technology,” John Wiley, pp. 544, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top