|
1.Service R. F., “DNA ANALYSIS: Microchip arrays put DNA on the spot,” Science 282 396-399 (1998). 2.Lee G. B., Lin C. S., Lee C. Y., Huang F. C., “Microfluidic chips for DNA replication, electrophoresis separation and on-line optical detection,” Proceedings of IEEE MEMS 2003 19-23 (2003). 3.Lin C. H., Lee G. B., Chen S. H., Chang G. L., “Micro Capillary electrophoresis chips integrated with buried SU-8/SOG optical waveguides for bio-analytical applications,” Sens. Actuators A 107 125-131 (2003). 4.Manz A., Graber N., Widmer H. M., “Miniaturization total chemical-analysis systems – a novel concept for chemical sensing,” Sens. Actuators B 1 244-248 (1990). 5.Effenhauser C. S., Bruin G. J. M., Paulus A., “Integrated chip-based capillary electrophoresis,” Electrophoresis 18 2203-2213 (1997). 6.Kopp M. U., Crabtree H. J., Manz A., “Development in technology and applications of Microsystems,” Curr. Opin. Chem. Biol. 1 410-419 (1997). 7.Colyer C. L., Tang T., Chiem N., Harrison D. J., “Clinical potential of microchip capillary electrophoresis systems,” Electrophoresis 18 1733-1741 (1997). 8.Nahar R. K., Khanna V. K., “Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor,” Sens. Actuators B 46 35-41 (1998). 9.Boisen A., Thaysen J., Jensenius H., Hansen O., “Environmental sensors based on micromachined cantilevers with integrated read-out,” Ultramicroscopy 82 11-16 (2000). 10.Kang U., Wise K., “A high-speed capacitive humidity sensor with on-chip thermal reset,” IEEE Trans. Electron Devices 47 (4) 702-710 (2000). 11.Barkauskas J., “Investigation of conductometric humidity sensors,” Talanta 44 1107-1112 (1997). 12.Chou K. S., Lee T. K., Liu F. J., “Sensing mechanism of a porous ceramic as humidity sensor,” Sens. Actuators B 56 106-111 (1999). 13.Arshak K. I., Twomey K., “Investigation into a novel humidity sensor operating at room temperature,” Microelectronics Journal 33 213-220 (2002). 14.Somani P. R., Viswanath A. K., Aiyer R. C., Radhakrishnan S., “Charge transfer complex-forming dyes incorporated in solid polymer electrolyte for optical humidity sensing,” Sens. Actuators B 80 141-148 (2001). 15.Rittersma Z. M., “Recent achievements in miniaturized humidity sensors – a review of transduction techniques,” Sens. Actuators A 96 196-210 (2002). 16.Story P. R., Galipeau D. W., Mileham R. D., “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuators B 24-25 681-685 (1995). 17.Nahar R. K., “Study of the performance degradation of thin film aluminum oxide sensors at high humidity,” Sens. Actuators B 63 49-54 (2000). 18.Qu W., Wlodarski W., Meyer J. U., “Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4,” Sens. Actuators B 64 76-82 (2000). 19.Su P. G., Chen I. C., Wu R. J., “Use of poly(2-acrylamido-2-methylpropane sulfonate) modified with tetraethyl orthosilicate as sensing material for measurement of humidity,” Analytica Chimica Acta 449 103-109 (2001). 20.Chatzandroulis S., Tserepi A., Goustouridis D., Normand P., Tsoukalas D., “Fabrication of single Si cantilevers using a dry release process and application in a capacitive-type humidity sensor,” Microelectronics Engineering 61-62 955-961 (2002). 21.Lee C. Y., Lee G. B., Liu H. H., Huang F. C., “MEMS-based temperature control system for PCR applications,” The International Journal of Non-linear Sciences and Numerical Simulations 3(4) 215-218 (2002). 22.Bashir R., Gupta A., Neudeck G. W., McElfresh M., Gomex R., “On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications,” Journal of Micromechanics and Microengineering 10 483-491 (2000). 23.Su Y., Evans A. G. R., Brunnschweiler A., Ensell G., “Characterization of a highly sensitive ultra-thin piezoresistive silicon cantilever probe and its application in gas flow velocity sensing,” Journal of Micromechanics and Microengineering 12 780-785 (2000). 24.Johnstone R. W., Parameswaran M., “Theoretical limits on the freestanding length of cantilevers produced by surface micromachining technology,” Journal of Micromechanics and Microengineering 12 855-861 (2002). 25.Hou M. T., Chen R., “Effect of width on the stress-induced bending of micromachined bilayer cantilevers,” Journal of Micromechanics and Microengineering 13 141-148 (2003). 26.Wang H. Y., Foote R. S., Jacobson S. C., Schneibel J. H., Ramsey J. H., “Low temperature bonding for microfabrication of chemical analysis devices,“ Sens. Actuators B 45 199-207 (1997). 27.Lee G. B., Chen S. H., Huang G. R., Sung W. C., Lin Y. H., “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators B 75 142-148 (2001). “ 28.Wang X. Q., Desai A., Tai Y. C., Licklider L, Lee T. D., “Polymer-base electrospray chips for mass spectrometry,” Proceedings of IEEE MEMS 1999 523-528 (1999). 29.Xu N., Lin Y., Hofsadler S. A., Matson D., Call C. J., Smith R. D., “A micro fabrication dialysis device for sample cleanup in electrospray ionization mass spectrometry,” Anal. Chem. 70 3553-3556 (1998). 30.Harrison D. J., van den Berg A., Proceedings of Micro Total Analysis Systems 1998 (1998). 31.Kutter J. P., “Current developments in electrophoretic and chromatographic separation methods on microfabricated devices,” Trends in Analytical Chemistry 19 (6) 352-363 (2000). 32.Chen S. H., Sung W. C., Lee g. B., Lin Z. Y., Chen P. W., Liao P. C., “A disposable poly(methylmethacrylate)-based microfluidic module for protein identification by nano-electrospray ionization tandem mass spectrometry,” Electrophoresis 22 3972-3977 (2001). 33.Sanders G. H. W., Manz A., “Chip-based microsystems for genomic and proteomic analysis,” Trends in Analytical Chemistry 19 (6) 364-378 (2000). 34.de Mello A. J., Beard N., “Dealing with ‘real‘ samples: sample pre-treatment in microfluidic systems,” Lab Chip 3 11N-19N (2003). 35.Mullis K. B., Ferré F., Gibbs R. A., “The polymerase Chain Reaction,” Bikhäuser (1994). 36.Northrup M. A., Ching M. T., White R. M., Watson R. T., “DNA amplification with a microfabricated reaction chamber,” Proceedings of Transducers 1993 924-926 (1993). 37.Northrup M. A., Gonzalez C., Hadley D., Hills R. F., Landre O., Lehew S., Saiki R., Shinsky J. J., Watson R., Watson R. Jr., “A MEMS-based miniature DNA analysis system,” Proceedings of Transducers 1995 , Eurosensors IX 764-767 (1995). 38.Woolley A. T., Hadley D., Landre P., deMello A. J., Mathies R. A., Northrup M. A., “Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device,” Analytical Chemistry 68 (23) 4081-4086 (1996). 39.Daniel J. H., Iqbal S., Millington R. B., Moore D. F., Lowe C. R., Leslie D. L. , Lee M. A., Pearce M. J., “Silicon microchambers for DNA amplification,” Sens Actuators A 71 81-88 (1998). 40.Schanmueller C. G. J., Lee M. A., Evans A. G. R., Brunnschweiler A, Leslie D. L., “Closed chamber PCR chips for DNA amplification,” Engineering Science and Education Journal Dec 259-264 (2000). 41.Lagally E. T., Mathies R. A., ”Integrated PCR-CE system for DNA analysis to the single molecule limit,” Proceedings of Micro Total Analysis Systems 2001 117-118 (2001). 42.Lagally E. T., Simpson P. C., Mathies R. A., “Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system,” Sens. Actuators B 63 138-146 (2000). 43.Lin C. H., Lee G. B., Lin Y. H., Chang G. L., “A fast-prototyping process for fabrication of microfluidic systems on soda-lime glass,“ Journal of Micromechanics and Microengineering 11 726-732 (2001). 44.Chiou C. H., Lee G. B., Hsu H. T., Chen P. W., Liao P. C., “Micro Devices Integrated with Microchannels and Electrospray Nozzles using PDMS Casting Techniques,” Sens. Actuators B 86 280-286 (2002). 45.Liao C. S., Lee G. B., Wu J. J., Chang C. C., Hsieh T. M., Huang F. C., Luo C. H., “Micromachined Polymerase Chain Reaction System for Multiple DNA Amplification of Upper Respiratory Tract Infectious Diseases,” in prese, Biosensors and Bioelectronics (2004). 46.Detinger S. K. W., Chiu D. T., Jeon N. L., Whitesides G. M., “Generation of gradients having complex shapes using microfluidic networks,” Anal. Chem. 73 1240-1246 (2001). 47.Bertsch A., Heimgartner S., Cousseau P., Renaud P., “Static micromixers based on large-scale industrial mixer geometry,” Lab Chip 1 56-60 (2001). 48.Lim D., Kamotani Y., Cho B., Mazumder J., Takayama S., “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3 318-323 (2003). 49.Moctar A. O. E., Aubry N., Batton J., “Electro-hydrodynamic micro-fluidic mixer,” Lab Chip 3 273-280 (2003). 50.Ajadri A., “ Electro-osmosis on inhomogeneously charged surfaces,“ Phys. Rev. Lett. 75 (4) 755–758 (2003). 51.Fletcher P. D. I., Haswell S. J., Zhang X., “ Electrical currents and liquid flow rates in micro-reactors,” Lab Chip 1 (2) 115-121 (2001). 52.Jin L. J., Ferrance J., Sanders J. C., Landers J. P., “ A microchip-based proteolytic digestion system driven by electroosmotic pumping,” Lab Chip 3 11-18 (2003). 53.Erickson D., Li D., “ Influence of surface heterogeneity on electrokinetically driven microfluidic mixing,“ Langmuir 18 1883-1892 (2002). 54.Johnson T. J., Rose D., Locascio L. E., “Characterization and optimization of slanted well designs for microfluidic mixing under electroosmotic flow,” Lab Chip 2 135-140 (2002). 55.Hjertén S., “High performance electrophoresis: Elimination of electroendosmosis and solute adsorption,“ J. Chromatography. 347 191-198 (1985). 56.Best N., Arriaga E., Chen D. Y., Dovichi N. J., “ Separation of fragments up to 570 bases in length by use of 6% T non-cross-linked polyacrylamide for DNA sequencing in capillary electrophoresis,“ Anal. Chem. 66 4063-4067 (1994). 57.Carrilho E., Ruiz-martinez M. C., Berka J., Smirnov I., Goetzinger W., Miller A. W., Brady D., Karger B. L., “ Rapid DNA sequencing of more than 1,000 bases per run by capillary electrophoresis using replaceable linear polyacrylamide solutions,“ Anal. Chem. 68 3305-3313 (1996). 58.Cifuentes A., Diez-Masa J. C., Fritz J., Anselmetti D., Bruno A. E., “Polyacrylamide-coated capillaries probed by atomic force microscopy: correlation between surface topography and electrophoretic performance,“ Anal. Chem. 70 3458-3462 (1998). 59.Cifuentes A., Canalejas P., Diez-Masa J. C., “Preparation of linear polyacrylamide-coated capillaries: study of the polymerization process and its effect on capillary electrophoresis performance,“ J. Chromatography A 830 423-438 (1999). 60.Zhou H. H., Miller A. W., Sosic Z., Buchholz B., Barron A. E., Kotler L., Karger B. L., “DNA sequencing up to 1,300 bases in two hours by capillary electrophoresis with mixed replaceable linear polyacrylamide solutions,“ Anal. Chem. 72 1045-1052 (2002). 61.Kirby B. J., Wheeler A. R., Zara R. N., Fruetel J. A., Shepodd T. J., “Programmable modification of cell adhesion and zeta potential in silica microchips,” Lab Chip 3 5-10 (2003). 62.Dolník V., Xu D., Yadav A., Bashkin J., Marsh M., Tu O., Mansfield E., Vainer M., Madabhushi R., Barker D., Harris D., “Wall coating for DNA sequencing and fragment analysis by capillary electrophoresis,“ J. Microcolumn Separations 10 (2) 175-184 (1998). 63.Srinivasan K., Pohl C., Avdalovic N., “Cross-linked polymer coatings for capillary electrophoresis and application to analysis of basic proteins, acidic proteins, and inorganic ions,“ Anal. Chem. 69 2798-2805 (1997). 64.Fedeev A. Y., Kazakevich Y. V., “Covalently attached monolayers of oligo (dimethylsiloxane)s on silica: a siloxane chemistry approach for surface modification,“ Langmuir 18 2665-2672 (2002). 65.Lin C. H., Lee G. B., Fu L. M., Chen S. H., “Integrated optical fiber capillary electrophoresis microchips with novel spin-on-glass surface modification,“ Biosensors and Bioelectronics in press (2004). 66.Hayes M. A., Kheterpal I., Ewing A. G., “Electroosmotic flow control and surface conductance in capillary zone electrophoresis,“ Anal. Chem. 65 2010-2013 (1993). 67.Schasfoort R. B. M., Schlautmann S., Hendrikse J., van den Berg A., “Field-effect flow control for microfabricated fluidic networks,“ Science 286 942-945 (1999). 68.Lee G. B., Chen S. H., Lin C. S., Huang G. R., Lin Y. H., “Microfabricated electrophoresis chips on quartz substrate and their applications on DNA analysis,“ Journal of the Chinese Chemical Society 48 6B (2001). 69.Lee C. Y., Lee G. B., “Applications of micromachine-based temperature control systems on bio-chips,” Acta Mechanica Sinica accepted for publishing (2004). 70.Lee C. Y., Lee G. B., Fu L. M., Lee K. H., Yang R. J., “Electrokinetically-driven active micro-mixers utilizing zeta potential variation induced by field effect,” Journal of Micromechanics and Microengineering accepted for publishing (2004). 71.Lee C. Y., Lee G. B., “Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation,” Journal of Micromechanics and Microengineering 13 (5) 620-627 (2003). 72.Hsieh C. M., Huang F. C., Liao C. S., Wu J. J., Chang C. C., Lee G. B., Luo C. H., “A portable micro polymerase chain reaction system,” Proceedings of Annual Conference on Bio-medical Engineering, Taipei, Taiwan, (2003).
|