(3.238.174.50) 您好!臺灣時間:2021/04/20 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭建信
研究生(外文):Chien-Hsin Cheng
論文名稱:使用診斷電壓脈衝的改良式無感測器驅動方法於外轉式磁阻馬達之研究
論文名稱(外文):Study of an Improved Sensorless Driving Method of Switched Reluctance Motors with External Rotor Using Impressed Voltage Pulse
指導教授:陳添智陳添智引用關係
指導教授(外文):Tien-Chih Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:103
中文關鍵詞:切換式磁阻馬達無感測器位置估測外轉式切換磁阻馬達
外文關鍵詞:switched reluctance motor with external rotorsensorless position estimationswitched reluctance motor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:199
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:1
  磁阻馬達具有結構簡單、低成本、容錯能力和可調速度的彈性。因為磁阻馬達的凸極結構,因此需要得知馬達轉子角度來進行正確換相控制來產生最大的力矩,但通常感測器例如編碼器通常被安裝在馬達轉軸上,如此會增加系統的成本、額外的空間和降低可靠度,不適用於惡劣的環境中,因此發展出無轉軸偵測元件的控制方法。本論文旨在提出一個診斷電壓脈衝的改良式無感測器驅動方法於外轉式磁阻馬達,診斷電壓脈衝法使用診斷電壓脈衝於磁阻馬達的非激磁相,藉由轉子轉動而造成馬達電感的變化,脈衝電壓所產生的偵測電流也會隨之改變,依據偵測電流的電流值可推估出馬達轉子的位置。但因為馬達的電感變化不明顯導致偵測電流的變化不大,如有干擾影響會導致此無感測器驅動方法失敗,因此提出改良式的診斷電壓脈衝法使偵測電流變化明顯已達到轉子位置估測的目的。本文首先介紹一般的切換磁阻馬達和外轉式切換磁阻馬達之結構、特性、動作原理與數學模型,然用利用改良式的診斷電壓脈衝法位置估測做為馬達換相控制的依據。
  本實驗架構使用具有浮點運算之32位元數位訊號處理器T.I. TMS320VC33 DSP來實現系統,並在控制器中加入改良式的診斷電壓脈衝法來估測位置,最後由模擬和實驗來驗證本文所提出的無轉軸偵測元件控制之可行性。
  The switched reluctance motors have been received more attention over the last two decades due to the advantage over other electronics motors such as simple construction, cost, fault-tolerant operation ability and flexibility of speed adjustment. Because of the structure of the SRM, the current reference of the SRM is dependent on turn-on and turn-off angle to maximize the torque. Therefore, the control of the SRM needs the knowledge of the shaft angle to generate the current command. But the shaft position sensors or encoders for shaft position information would produce the problem of additional cost, more space requirement and unreliability of inherent source. Therefore, the sensorless control system is developed extensively to eliminate the sensors. The thesis presents an improved impressed diagnostic pulse voltage method to estimate the rotor position of switched reluctance motor (SRM) with external rotor. The fundamental method of impressed diagnostic pulse voltage is to impress pulse voltage at the inactive phases of the SRM with external rotor. Because the variations of inductance are dependent on the rotor position and the characteristic current values produced from pulse voltage are dependent on the inductance, the rotor position can be inferred by observing the characteristic current value. If the inductance of the SRM doesn’t vary obviously, the characteristic current with noise influence may not provide correct information to result the failure of the sensorless position estimation method. Therefore, an improved impressed diagnostic pulse voltage method is presented to increase the variations of characteristic current and estimate rotor position. First, the structure, characteristic, operational principle and mathematical model of the SRM with external rotor are introduced. Then the improved impressed diagnostic pulse voltage method is utilized to implement the sensorless position estimation for commutation control.
  The structure of the experiment utilizes the digital signal processor T.I. TMS320VC33 DSP to implement the improved impressed diagnostic pulse voltage method. Both simulation and experiment results demonstrate the feasibility of the sensorless position estimation method.
摘要 I
Abstract II
Acknowledgements III
Contents IV
List of Figures and Tables VII
Symbols XIII

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.3 Structure of the Thesis 5

Chapter 2 Brief Description of the SRM 7
2.1 The Structure of the SRM 7
2.2 Reluctance Torque 9
2.3 The Operational Principle of the SRM 10
2.4 Mathematical Model 13
2.4.1 Dynamic Equation 13
2.4.2 Torque Equation 15
2.5 Inductance and Torque Model 18
2.6 Power Electronic Converters 22
2.7 Advantages and Disadvantages of the SRM. 26

Chapter 3 Description of the SRM with External Rotor 29
3.1 The Structure of the SRM with External Rotor 29
3.1.1 The Conventional 2-Phase SRM 29
3.1.2 2-Phase 6-pole SRM with External Rotor 30
3.2 The Operational Principle of the SRM with External Rotor 32
3.3 The Electromagnetic Model and Torque Equation of SRM with External Rotor 34
3.4 Ideal Inductance and Torque Equation 39
3.5 Characteristic, Advantages and Disadvantages 41

Chapter 4 Position Estimation Methods 44
4.1 Position Estimation Methods 44
4.1.1 Observer Based Position Estimation Method 45
4.1.2 Flux Linkages and Current Estimation Method 45
4.1.3 Mutual Flux Linkages Method at Inactive Phases Method 46
4.1.4 Current Gradient Method 46
4.1.5 Impressed Diagnostic Pulse Method 46
4.1.6 Modulation Techniques Method 47
4.2 Impressed Increasing Diagnostic Pulse Method 49

Chapter 5 Digital Driving and Experiment Structure 54
5.1 Experiment Structure 54
5.2 Digital Signal Processor 56
5.3 Hardware Equipment and Experimental Circuit 59
5.3.1 Power Converter Circuit 59
5.3.2 Current Measurement Circuit with Hall Sensor 64
5.3.3 Driving Circuit 66
5.3.4 Frequency to Velocity Circuit 67
5.3.5 PWM Circuit 68
5.3.6 Peak Value Holding Circuit 70
5.4 Software Structure and Procedure 71

Chapter 6 Simulation and Experiment Results 74
6.1 Simulation results 74
6.2 Experiment results 82

Chapter 7 Conclusion and Suggestion 96
7.1 Conclusion 96
7.2 Suggestion 96

References 98

Vita 103
[1]M. Moallem, C. M. Ong, and L. E. Unnewehr, “Effect of rotor profiles on the torque of a switched reluctance motor,” IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 247-253, Oct. 1990.
[2]C. Pollock, and B. W. Williams,“A unipolar converter for a switched reluctance motor,” IEEE Transactions on Industry Applications, vol. 26, no. 2, pp. 222-228, March-April 1990.
[3]I. Husain,“Minimization of torque ripple in SRM drives,” IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 28 -39, Feb. 2002.
[4]I. Husain, and M. Ehsani, “Torque ripple minimization in switched reluctance motor drives by PWM current control,” IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 83-88, Jan. 1996.
[5]A. M. Stankovic, G. Tadmor, Z. J. Coric, and I. Agirman, “On torque ripple reduction in current-fed switched reluctance motor,” IEEE Transactions on Industrial Electronics, vol. 46, no. 1, pp. 177-183, Feb. 1999.
[6]S. Bolognani, and M. Zigliotto, “Fuzzy logic control of a switched reluctance motor drive,” IEEE Transactions on Industry Applications, vol. 32, no. 5, pp. 1063-1068, Sept. -Oct. 1996.
[7]D. S. Reay, M. M. Moud, T. C. Green, and B. W. Williams, “Switched reluctance motor control via fuzzy adaptive systems,” IEEE Control Systems Magazine, vol. 15, no. 3, pp. 8-15, June 1995.
[8]K. M. Rahman, A. V. Rajarathnam, and M. Ehsani, “Optimized instantaneous torque control of switched reluctance motor by neural network,” IEEE Industry Applications Annual Meeting, New Orleans, Louisiana, vol. 1, pp. 556-563, October 1997.
[9]J. S. Chang, R. Donald, and W. Barry, “Adapting CMAC neural networks with constrained LMS algorithm for efficient torque ripple reduction in switched reluctance motors,” IEEE Transactions on Control Systems Technology, vol. 7, no. 4, pp. 401-413, July 1999.
[10]A. Lumsdaine, and J. H. Lang, “State Observers for Variable Reluctance Motors,” IEEE Transactions on Industry Electronics, vol. 37, no. 2, pp. 133-142, April 1990.
[11]M. S. Islam, I. Husain, R. J. Veillette and C. Batur, “Design and Performance Analysis of Sliding-Mode Observers for Sensorless Operation of Switched Reluctance Motors,” IEEE Transactions on Control Systems Technology, vol. 11, no. 2, pp.383-389, May 2003.
[12]J. P. Lyons, S. R. MacMinn and M. A. Preston, “Flux/Current Methods For SRM Rotor Position Estimation,” IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 482-487, Sept. 1991.
[13]J. Bu and L. Xu, “Eliminating Starting Hesitation for Reliable Sensorless Control of Switched Reluctance Motors,” IEEE Transactions on Industry Applications, vol. 37, no. 1, pp. 59-66, Jan. -Feb. 2001.
[14]C. H. Choi, D. Lee and K. Park, “A New Performance Estimation Method for a Switched Reluctance Motor Without the Design Process of the Torque Controller,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 1163-1168, June 2001.
[15]H. P. Chi, T. J. Liang, C. L. Chu, J.F. Chen and M. T. Chang, “Improved Mutual Voltage Technique of Indirect Rotor Position Sensing in Switched Reluctance Motor,” Power Electronics Specialists Conference, 2002. vol. 1, pp. 271-275, June 2002
[16]I. Husain and M. Ehsani, “Rotor Position Sensing in Switched Reluctance Motor Drives by Measuring Mutually Induced Voltages,” IEEE Transactions on Industry Applications, vol. 30, no. 3, pp. 665-672, May-June 1994.
[17]S. K. Panada and G. A. J. Amaratunga, “Analysis of the Waveform Detection Technique for Indirect Rotor-Position Sensing of Switched Reluctance Motor Drives,” IEEE Transactions on Energy Conversion, vol. 6, no. 3, pp. 476-483, Sept. 1991.
[18]S. K. Panada, K. Y. Chong and K. S. Lock, “Indirect Rotor Position Sensing for Variable Reluctance Motors,” Industry Applications Society Annual Meeting, 1994., Conference Record of the 1994 IEEE, vol. 1, pp. 644-648, 1994.
[19]H. J. Guo, W. B. Lee, T. Watanabe, and O. Ichinokura, “An Improved Sensorless Driving Method of Switched Reluctance Motors Using Impressed Voltage Pulse,” IEEE Power Conversion Conference, vol. 3, pp. 977-980, April 2002.
[20]H. J. Guo, M. Takahashi and O,Ichinokura, “A New Sensorless Drive Method of Switched Reluctance Motors Based on Motor’s Magnetic Characteristics,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2831-2833, July 2001.
[21]G. Suresh, B. Fahimi, and M. Ehsani “Improvement of the Accuracy and Speed Range in Sensorless Control of Switched Reluctance Motors,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 771-777, Feb. 1998.
[22]M. Ehsani, I. Husain, S. Mahajan, and K. R. Ramani “New Modulation Encoding Techniques for Indirect Rotor Position Sensing in Switched Reluctance Motors,” IEEE Transactions on Industry Applications, vol. 30, no.1, pp. 85-91, January-February. 1994.
[23]K. J. Tseng, F. Yan, S.Cao, and C.Eyguesier “A Basic Algorithm of Sensorless Rotor Position Detection using Fuzzy Logic for the Switched Reluctance Motor Drives,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 684-688, July 1999.
[24]N. Ertugrul and A. D. Cheok “Indirect Angle Estimation in Switched Reluctance Motor Drive Using Fuzzy Logic Based Motor Model,” IEEE Transactions on Power Electronics, vol. 15, no. 6, pp. 1029-1044, Nov. 2000.
[25]M. T. Direnzo, “Switched reluctance motor control-basic operation and example using the TMS320F240,” TI DSP SR Research and Development Center Application Report, February 2000.
[26]T. J. E. Miller, Switched Reluctance Motors and their Control, Magna Physics Publishing and Clarendon Press, Oxford, 1993.
[27]M. Barnes and C. Pollock, ”Power Electronic Converters for Switched Reluctance Drives”, IEEE Transactions on Power Electronics, vol. 13, no. 6, pp. 1100-1111, 1998.
[28]T. J. E. Miller, Switched reluctance motor drives, Intertec Communications Inc. Ventura, CA (USA), 1988.
[29]S. Mir, I. Husain, and M. E. Elbuluk, “Energy Efficient C-Dump Converters for Switched Reluctance Motors,” IEEE Transactions on Power Electronics, vol. 12, no. 5, pp 912-921, Sept. 1997.
[30]劉耀文,切換式磁阻車輪馬達之電腦輔助設計及分析,碩士論文,國立成功大學機械工程學系,民國89年。
[31]黃正毅,外轉式兩相切換磁阻馬達之驅動控制,碩士論文,國立成功大學機械工程學系,民國90年。
[32]林瑞德,模糊控制於外轉式切換磁阻馬達降低轉矩連波之研究,碩士論文,國立成功大學工程科學系,民國92年。
[33]張民典,切換式磁阻馬達換相位置估測於廣域控制之研究,碩士論文,國立成功大學電機工程學系,民國91年。
[34]史賓納科技股份有限公司,Code composer C3X/C4X XDS510-PP emulator 安裝使用手冊V1.0,October 01, 2002.
[35]史賓納科技股份有限公司,STC-VC33 DSP應用卡使用手冊V1.1,December 31, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔