(3.236.228.250) 您好!臺灣時間:2021/04/17 13:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳毓儒
研究生(外文):Yu-Ru Chen
論文名稱:低溫多晶矽薄膜製程之研究
論文名稱(外文):Study on the Processing of Low Temperature Poly-Si Thin Film
指導教授:趙隆山
指導教授(外文):Long-Sun Chao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:81
中文關鍵詞:雷射退火凝固TFT-LCD
外文關鍵詞:TFT-LCDSolidificationLaser annealing
相關次數:
  • 被引用被引用:7
  • 點閱點閱:208
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
  雷射退火法是目前在LCD產業,製造低溫多晶矽薄膜最普遍的方式,本研究以脈衝式KrF雷射光照射非晶矽薄膜,使矽膜加熱、融化,然後結晶為多晶矽結構。以a-Si薄膜、二氧化矽膜及玻璃基板作為工件材料,考慮脈衝式雷射之雷射能量密度、雷射發數、脈衝覆蓋率與加入隔離層等因素,使用實驗實做製程並利用SEM觀察,來討論其對多晶矽薄膜製程之影響。脈衝雷射的瞬間功率極高,使得a-Si薄膜產生迅速地升溫並且快速地降溫。由實驗之結果可發現雷射之照射所產生之融池,若不屬於完全熔融,其平均晶粒尺寸隨著矽薄膜所獲得能量之增大而變大;若屬於完全熔融,平均晶粒尺寸反而變小,隨著雷射能量之升高,此現象愈明顯。
  At present, the Laser annealing method is the most general way to fabricate the poly-Si film of low temperature for LCD industry. In this study, the working pieces primarily include a-Si film and glass substrate. The KrF excimer laser is used to irradiate the amorphous silicon film. The film melts and then solidifies rapidly as a poly-Si one. SEM is used to investigate the resulting poly-Si film. The control parameters of laser energy intensity, pulse number and coverage fraction are considered in this paper. The effects of these control parameters on the average grain size of poly-Si have been studied. The effect of SiO2 layer put between Si film and glass substrate was also investigated. From the experimental results, it can be found that if the molten pool of Si caused by laser energy doesn’t belong to “complete melt”, the more energy obtained from the laser could lead to the larger average grain size. However, if it belongs to “complete melt”, the average grain size would be much smaller than that of the former one (non-complete melt). With the increase of laser energy, the phenomenon becomes more significant.
摘要 …………………………………………………………… I
Abstract………………………………………………………… II
致謝 ……………………………………………………………III
目錄 ……………………………………………………………IV
表目錄…………………………………………………………VII
圖目錄……………………………………………………… VIII
符號說明…………………………………………………… XIII
第一章 緒論
1- 1簡介……………………………………………………1
1-1-1 多晶矽薄膜電晶體液晶顯示器(Thin-Film-Transistor Liquid Crystal Displays : TFT-LCDs)……………………………………3
1-1-2 太陽能電池……………………………………5
1-1-3 多晶矽薄膜的製作……………………………6
1-1-4 準分子雷射特性………………………………8
1-2文獻回顧 ………………………………………………10
1-3研究目的 ………………………………………………13
第二章 實驗方法與設備 ……………………………………14
2-1準分子雷射系統 ………………………………………14
2-1-1 KrF準分子雷射之設備規格及裝置系統 ……14
2-1-2雷射退火原理 …………………………………15
2-2鍍膜設備 ………………………………………………16
2-2-1濺鍍設備規格 …………………………………17
2-2-2鍍膜原理 ………………………………………17
2-3 非晶矽與二氧化矽層的鍍膜流程……………………19
2-4實做準分子雷射退火實驗 ……………………………21
2-4-1不同雷射能量密度 ……………………………22
2-4-2不同雷射覆蓋率 ………………………………22
2-4-3雷射發數 ………………………………………22
2-4-4加入隔離層 ……………………………………23
第三章 結果與討論 …………………………………………24
3-1 不同雷射能量密度 ……………………………………24
3-2 不同雷射覆蓋率 ………………………………………27
3-3 雷射發數 ………………………………………………29
3-4 加入隔離層的多孔性二氧化矽膜 ……………………30
3-5 雷射退火之數值分析 …………………………………31
第四章 結論 …………………………………………………32

參考文獻 ………………………………………………………33
附錄(A) 玻璃基版的特性……………………………………57
附錄(B) 理論分析與數值方法………………………………58
B-1 問題描述 ……………………………………………58
B-2 基本架設 ……………………………………………59
B-3 統御方程式 …………………………………………59
B-4 起始條件與邊界條件 ………………………………60
B-5 雷射熱源的處理 ……………………………………61
B-6 數值方法 ……………………………………………61
B-6-1 離散方程組與解法……………………………62
B-6-2 潛熱效應之計算方法…………………………65
B-6-3 求解過程與收斂條件…………………………66
B-7雷射退火之數值實驗 ………………………………66
B-8數值實驗之結論 ……………………………………68
自述 ……………………………………………………………81
參考文獻
1.S. O. Kasap, “Principle of Electrical Engineering Materials and Devices,” 2nd ed., McGraw-Hill Company, New York, USA, 2002.
2.M. Balkanski and R. F. Wallis, “Semiconductor Physics and Applications,” Oxford University Press Inc., New York, USA, 2000.
3.W. C. Yeh, “Study of Excimer-Laser-Processed Polycrystalline-Silicon Thin-Film Solar Cells,” Ph.D. thesis, Department of Physical Electronics, Tokyo Institute of Technology, Japan, 2000.
4.Do-Hyun Choi, Eiichi Sadayuki, Osamu Sugiura, and Masakiyo Matsumura, “Lateral Growth of Poly-Si Film by Excimer Laser and Its Thin Film Transistor Application,” Jpn. J. Appl. Phys, Vol. 33, Part 1, No. 1A, pp.70-74, January, 1994.
5. Hiroyuki Kuriyama, “Excimer laser crystallization of silicon films for AMLCDs,” in AMLCD, pp. 87-92, 1995.
6. Lambda Physik, Germany, “Excimer Laser Radiation for Silicon Thin Film Crystallization,” Highlights No.52, pp.1-4, 1997.
7. T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6×6 Inch 20 Lines-per-Inch Liquid-Crystal Display Panel,” IEEE Transactions on Electron Devices, Vol. ED-20, No. 11, pp. 995-1001, 1973.
8. P. G. Lecomber, W. E. Spear, and A. Ghaith, “Amorphous-Silicon Field-Effect Device and Possible Application,” Electronics Letters, Vol. 15, No. 6, pp. 179-181, March, 1979.
9. Kazuhiro Shimizu, and Osamu Sugiura, “High-mobility Poly-Si Thin-film Transistors Fabricated by a Novel Excimer Laser Crystallization Method,” IEEE Transactions on Electron Devices, Vol. 40, No. 1, January, 1993.
10. Tadashi Serikawa, and Seiiti Shirai, “Low Temperature Fabrication of High Mobility Poly-Si TFTs for Large Area LCDs,” IEEE Transactions on Electron Devices, Vol. 36, No. 9, pp. 1929-1933, September, 1989.
11. E. Fujii, K. Senda, F. Emoto, A. Yamamoto, A. Nakamura, Y. Uemoto, and G. Kano, “A Laser-recrystallization Technique for Silicon-TFT Integrated Circuits on Quartz Substrates and Its Application to Small-size Monolithic Active-matrix LCD’s,” IEEE Transactions on Electron Devices, Vol. 37, pp. 121-127, January 1990.
12.N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The Fabrication and Characterization of EEPROM Arrays on Glass Using a Low Temperature Poly-Si TFT Process,” IEEE Transactions on Electron Devices, Vol. 43, No. 11, pp. 1930-1936, November, 1996.
13.G. K. Giust, and T. W. Sigmon, “High-Performance Thin-Film Transistors Fabricated Using Excimer Laser Processing and Grain Engineering,” IEEE Transaction on Electron Devices, Vol. 45, No. 4, pp. 925-932, April, 1998.
14. G. K. Giust, and T. W. Sigmon, “Laser-Processed Thin-Film Transistors Fabricated from Sputtered Amorphous-Silicon Films,” IEEE Transaction on Electron Devices, Vol. 47, No. 1, pp. 207-213, January, 1998.
15. Aaron Marmorstein, and Apostolos T. Voutsas, “A Systematic Study and Optimization of Parameters Affecting Grain Size and Surface Roughness in Excimer Laser Annealed Polysilicon Thin Films,” J. Appl. Phys., Vol. 82, No. 9, p. 1, 1997.
16. H. Kakinuma, M. Mohri, and T. Tsuruoka, “Mechanism of Low-Temperature Polycrystalline Silicon Growth from a SiF4/SiH4/H2 Plasma,” J. Appl. Phys, Vol. 77, No. 2, pp. 646-652, 1995.
17. W. G. Hawkins, “Polycrystalline-Silicon Device Technology for Large-Area Electronics,” IEEE Transaction on Electron Devices, Vol. ED-33, No. 4, pp. 477-481, April 1986.
18. T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka, and S. Tsyda, “High-quality Polycrystalline Silicon Thin Film Prepared by a Solid Phase Crystallization Method,” Journal of Non-Crystalline Solids, Vol. 198-200, pp. 940-944, 1996.
19. Hiroyuki Kuriyama, and Takashi Kuwahara, “Improving the Uniformity of Poly-Si Films Using a New Excimer Laser Annealing Method for Giant-microelectronics,” Jpn. J. Appl. Phys, Vol. 31, pp. 4550-4554, 1992.
20.Kenji Sera, Fujio Okumura, Hiroyuki Uchida, Shinji Itoh, Setsuo Kaneko, and Kazuaki Hotta, “High-Performance TFT’s Fabricated by XeCl Excimer Laser Annealing of Hydrogenated Amorphous-silicon Film,” IEEE Transactions on Electron Devices, Vol.36, No. 12, pp. 2868-2872, December 1989.
21.Hiroyuki Kuriyama and Takashi Kuwahara, “Improving the uniformity of poly-Si films using a new excimer laser annealing method for giant-microelectronics,” in Jpn. J. Appl. Phys. Vol. 31pp. 4550-4554, 1992.
22.Do-Hyun Choi, Eiichi Sadayuki, Osamu Sugiura and Masakiyo Matsumura, “Lateral Growth of Poly-Si Film by Excimer Laser and Its Thin Film Transistor Application,” in Jpn. J. Appl. Phys. Vol. 33, pp.70-74 Part 1, No. 1A, January 1994.
23.Do-Hyun Choi, Eiichi Sadayuki, Osamu Sugiura and Masakiyo Matsumura, “Lateral Growth of Poly-Si Film by Excimer Laser and Its Thin Film Transistor Application,” in Jpn. J. Appl. Phys. Vol. 33, pp.70-74 Part 1, No. 1A, January 1994.
24.D.H. Choi, K. Shimizu, O. Sugiura, and M. Matzumura, “Drastic Enlargement of Grain Size of Excimer-Laser-Crystallized Poly-silicon Films,” Jpn. J. Appl. Phys., Vol. 31, pp. 4545-4549, 1992.
25.J. S. Im, R. S. Sposill and M. A. Crowder, “Single-crystal Si Films for Thin-Film Transistor Devices,” Appl. Phys. Lett., 70 (25), pp. 3434-3436, 23 June, 1997.
26.H. J. Kim and J. S. Im, “New Eccimer-Laser-Crystalliation Method for Producing Large-Grained and Grain Boundary-Location-Controlled Si Film Transistors,” Appl. Phys. Lett., 68 (11), 11, pp. 1513-1515, 11 March, 1996.
27.K. Ishikaw, M. Ozawa, C.H. Oh and M. Matsumura, “Excimer-Laser-Induced Lateral-Growth of Silicon Thin-Films,” Jpn. J. Appl. Phys. Vol. 37, pp. 731-736, 1998.
28.W. Kurz, and D. J. Fisher, Fundament als of Solidification, 4th ed., Trans Tech Publications, LTD, Switzerland, 1998.
29.G. Aichmayrs, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, S. Christiansen, M. Albrecht and H. P. Strunk, “Lateral Grain Growth during the Laser Interface Crystallization of a-Si,” phys. stat. sol. (a), 166, pp. 659-666, 1998.
30.C.H. Oh, M. Ozawa and M. Matsumura, “A Novel Phase-Modulated Excimer-Laser Crystallization Method of Silicon Thin Films,” Jpn. J. Appl. Phys. Vol. 37, pp. L 492-L 495, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔