(3.237.20.246) 您好!臺灣時間:2021/04/15 10:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳鴻滄
研究生(外文):Hung-Chang Chen
論文名稱:奈米多元合金之材料性質分析
論文名稱(外文):Nanomaterial properties analysis of the multicomponent alloy
指導教授:黃吉川黃吉川引用關係
指導教授(外文):Chi-Chuan Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:73
中文關鍵詞:高壓玻璃轉換分子動力學
外文關鍵詞:High pressureGlass transitionmolecular dynamics
相關次數:
  • 被引用被引用:3
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
  本文以分子動力學模擬方式,針對塊狀合金在高壓系統之凝固分析,模擬雙元與三元合金的凝固製程,所探討之製程參數包含:高壓環境、材料成份比例、冷卻速率。Cu-Ni合金在高壓環境條從熔點溫度冷卻至室溫,模擬系統中原子與原子間的作用力採用tight-binding勢能函數,由模擬數值發現高壓作用對於Cu與Ni金屬的相變影響很大,合金由熔點固化至室溫會有三種特殊的相變轉換路徑,也就是由熔點溫度至結晶結構、由玻璃轉換溫度至玻璃結構、由結晶結構再轉變成玻璃結構之共存相,結果顯示玻璃轉換通常發生在較低壓之系統與Cu含量較高之合金中,由結晶結構再轉變成玻璃結構之共存相,均傾向發生在較高壓之系統與Ni含量較高之合金中。Al-Cu-Ni三元合金分別在不同之系統壓力、材料成份與冷卻速率條件下,分析材料凝固後之微結構組織,我們發現合金的結構形態均會趨向於非晶相,此外,三元合金材料之 變化會隨著Ni含量與系統壓力之增加而提昇,而在不同冷卻速率與不同系統壓力條件下,分別在高、中、低壓力下會產生三種不同變化之趨勢。我們藉由分子動力學的模擬,以透視分析材料在奈米尺度下之微結構,進而掌握與控制材料的性質,以做為新型材料之開發與製程改善之基礎。
  In this thesis we use the molecular dynamics to analyse the block alloy’s solidify in high pressure system and simulate the binary and ternary alloy’s solidify. To discuss the parameters includes: high pressure environment、the proportion of materials and cooling rate. the phase transitions of Cu and Ni alloys as they cool from melting temperature to room temperature under high-pressure conditions. The interatomic forces acting between the atoms are modeled by the tight-binding potential. The numerical results confirm that the metal phase transition is influenced significantly by the pressure conditions, even in the case of pure Cu and Ni metals. Three specific transition pathways are identified for the Cu and Ni alloys as they cool from melting temperature to room temperature, namely a transition at the melting temperature to a crystalline structure, a transition at the glass transition temperature to a glass structure, and finally solidification at the melting temperature followed by a subsequent transition at the glass transition temperature. The results reveal that glass transition generally occurs at lower pressures in alloys with higher Cu compositions, while glass transition following prior solidification tends to takes place at higher pressures in alloys with higher Ni compositions. The Al-Cu-Ni ternary alloy in the different system pressure、materials and cooling rate, analyzing the microstructure after solidifying and discussing the structure will become amorphous. Besides, the change of will increase by proportion of Ni and system pressure in ternary alloy. In the different cooling rate and system pressure condition there will be three different change in high、middle and low pressure. Analyzing the material microstructure in nano-scale and controlling the material properties by molecular dynamics. According to above result, to develop the new material and prove the process.
目錄…………………………………………………………Ⅰ
中文摘要……………………………………………………Ⅳ
英文摘要……………………………………………………Ⅴ
誌謝…………………………………………………………Ⅵ
圖目錄………………………………………………………Ⅶ
表目錄………………………………………………………Ⅹ
符號說明……………………………………………………XI

第一章 緒論…………………………………………………1
1-1 非晶態合金之特色與發展簡介 ………………………1
1-1-1 非晶態合金之概述 …………………………………1
1-1-2 非晶態合金之發展歷程 ……………………………3
1-1-3 非晶質合金的特性 …………………………………6
1-2 非晶態合金形成之製備方法…………………………11
1-2-1非晶態合金形成條件與應用 ………………………11
1-2-1-1 影響非晶態合金形成條件………………………11
1-2-1-2非晶態合金之應用 ………………………………12
1-2-2非晶態合金之製備方法 ……………………………14
1-3 高壓環境下相關之研究與相關模擬數值分析方式…19
1-3-1 高壓環境下之相關研究……………………………19
1-3-2 系統壓力之修正方法………………………………21
1-3-3 模擬數值分析方式…………………………………21
1-3-3-1徑向分佈函數(Radial Distribution Function , RDF)…………………………………………………………22
1-3-3-2 均方位移 (Mean Square Displacement , MSD) ………………………………………………………………24
1-3-3-3玻璃轉換溫度(Glass Transition Temperature , Tg) …………………………………………………………25
1-4 研究動機與目的………………………………………27
1-5 論文架構………………………………………………28

第二章 奈米純金屬與双元合金之材料性質研究 ………30
2-1 純金屬與双元合金相關之模擬文獻回顧……………30
2-2 物理模型之建立………………………………………32
2-3 Cu純金屬之材料研究…………………………………33
2-3-1 Cu純金屬之微結構分析……………………………34
2-3-2 Cu純金屬之熱力學分析……………………………36
2-4 Ni純金屬之材料研究…………………………………38
2-4-1 Ni純金屬之微結構分析……………………………38
2-4-2 Ni純金屬之熱力學分析……………………………39
2-5 Cu-Ni雙元合金系統之材料研究 ……………………42

第三章 奈米三元合金之材料性質研究 …………………51
3-1 奈米三元合金製程與模擬之文獻回顧………………51
3-2 物理模型之建立………………………………………52
3-3 Al-Cu-Ni三元合金系統之研究分析…………………54
3-3-1 快速冷卻過程Al-Cu-Ni合金的結構特性…………54
3-3-1-1不同冷卻速率下之微結構分析 …………………54
3-3-1-2不同壓力下之微結構分析 ………………………55
3-3-2 Al-Cu-Ni合金的玻璃轉換溫度與合金比例之關係……………………………………………………………57
3-3-3 Al-Cu-Ni合金經回火處理之結構分析……………61

第四章 總結與建議 ………………………………………64
4-1 結論……………………………………………………64
4-2 建議與未來展望………………………………………65

參考文獻……………………………………………………67
作者…………………………………………………………73
1. J. Kramer, Zeitschrift fur Physik, Vol.106, pp.639, (1937).

2. J. Kramer, “Nonconducting modifications of metals”, Annalen der Physik, Vol.19, pp.37-64, (1934).

3. A. Brener, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand, Vol.44, pp.109, (1950).

4. P. Duwes, Transactions of American Society for Metals, Vol.60, pp.607, (1967).

5. H. S. Chen and C. E. Miller, Review of Scientific Instruments, Vol.41, pp.1237, (1970).

6. H.W.Kui, “Formation of bulk glass”, Applied Physics Letters, Vol.62, No.11, pp.1224-1226, (1993).

7. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions JIM, Vol.32, No.7, pp.609-616, (1991).

8. A. Inoue, A. Kato, M. Watanabe, H. M. Kimura, F. Takahashi, A. Nagata and T. Masumoto, “High mechanical strength of quasicrystalline phase surrounded by fcc-Al phase in rapidly solidified Al-Mn-Ce alloys”, Materials Transactions JIM, Vol.33, No.8, pp.723-729, (1992).

9. A. Inoue, K. Kita, T. Masumoto and K. Katsumasa Ohtera, “New amorphous alloys with good ductility in Al-Ce-M (M=Nb,Fe,Co,Ni or Cu) systems”, Japanese Journal of Applied Physics Part 2-Letters, Vol.27, No.10, pp.L1796-L1799, (1988).

10. A. Inoue, T. Nakamura, T. Sugita, T. Zhang and T. Masumoto, “Bulky La-Al-TM (TM=Transition Metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method”, Materials Transactions JIM, Vol.34, No.4, pp.351-358, (1993).

11. A. Inoue, T. Zhang, E. Matusbara, Y. Waseda and T. Masumoto, “Reductilization of an embrittled amorphous alloys by water quenching from supercooled liquid”, Materials Transactions JIM, Vol.32, No.3, pp.201-206, (1991).

12. A. Inoue, N. Nishiyama and T. Matsuda, “Preparation of bulk glassy alloy of 40mm in diameter by water quenching”, Materials Transactions JIM, Vol.37, No.2, pp.181-184, (1996).

13. T. Zhang and A. Inoue, “Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization”, Materials Transactions JIM, Vol.39, No.10, pp.1001-1006,
(1998).

14. A. Inoue, T. Zhang and T. Masumto, “Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region”, Materials transactions JIM, Vol.31, pp.177-183, (1990).

15. A. Inoue, T. Zhang and T. Masumto, “Amorphous Zr-Al-TM (TM=Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K”, Materials transactions JIM, Vol.32, pp.1005-1008, (1990).

16. A. Inoue, T. Zhang and T. Masumto, “Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Metallic Mold Casting Method”, Materials transactions JIM, Vol.31, pp.425-430, (1990).

17. A. Inoue, T. Zhang, N. Nishiyama, K. Ohbaand, T. Masumoto, Materials transactions JIM, Vol.34, pp.1234-1239, (1992).

18. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Materials transactions JIM, Vol.33, No.10, pp.937-945, (1992).

19. A. Inoue, T. Zhang and A. Takeuchi, “Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM=IV-VIII group transition metal) system”, Applied Physics Letters, Vol.71, No.4, pp.464-466, (1997).

20. Löffler, F Jörg, “Bulk metallic glasses”, Intermetallics, Vol.11, pp.529-540, (2003).

21. P. Haasen, "Metallic Glasses", Journal of Non-Crystalline Solids, Vol.56, No.1-3, pp.191-199, (1983).

22. H. Jones, Rapid Solidification of Metals and Alloys, Inst. Of Metallurgists, London, 1982.

23. F. G. Yost, Journal of Materials Science, Vol.16, No.11, pp.3039-3044, (1981).

24. H. S. Chen, H. J. Leamy and C. E. Miller, Annual Review of Materials Science, Vol.10, pp.363-391, (1980).

25. B. B. Prasad, T. R. Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, Journal of Non-crystalline Solids, Vol.61, No.2, pp.391-395, (1984).

26. Carlisle , H. Ben, Machine Design, Vol.58, No.1, pp.24-30, (1986).

27. D. Szewieczek, J. Tyrlik-Held, S. Lesz, Journal of Materials Processing Technology, Vol.109, pp.190-195, (2001).

28. D. R. Uhlmann, “A kinetic treatment of glass formation”, Journal of Non-Crystalline Solids, Vol.7, pp.337-348, (1972).

29. A. Inoue, T. Zhang and T. Masumto, “Glass-forming ability of alloys”, Journal of Non-Crystalline Solids, Vol.156, pp.473-480, (1993).

30. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials transactions JIM, Vol.36, No.7, pp.866-875, (1995).

31. A. Inoue, T. Zhang, T. Itoi, A. Takeuchi, “New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties”, Materials transactions JIM, Vol.38, No.4, pp.359-362, (1997).

32. A. Inoue, A. Murakami, T. Zhang, A. Takeuchi, “Thermal stability and magnetic properties of bulk amorphous Fe-Al-Ga-P-C-B-Si alloys”, Materials transactions JIM, Vol.38, No.3, pp.189-196, (1997).

33. A. Inoue, A. Makino, T. Mizushima, “Soft magnetic properties of Fe based amorphous thick sheets with large glass forming ability”, Journal of Applied Physics, Vol.81, No.8, pp. 4029-4031, (1997).

34. A. Inoue, H. Koshiba, T. Itoi, A. Makino, “Ferromagnetic Co-Fe-Zr-B amorphous alloys with glass transition and good high-frequency permeability”, Applied Physics Letters, Vol.73 (6): pp.744-746 (1998).

35. A. Inoue, H. Koshiba, T. Zhang, A. Makino, “Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0-10Nb (or Ta)(0-10)B-20 amorphous alloys”, Journal of Applied Physics, Vol.83, No.4, pp.1967-1974, (1998).

36. R. Zallen, “The Physics of Amorphous Solids”, Wiley & Sons, Inc. New York, (1983).

37. 吳學陞 著, “新興材料-塊狀非晶質合金” ,工業材料149期, pp.154-165,(1999).

38. L. Holland, “Vacuum Deposition of Thin Film”, Champman and Hall, (1963).

39. G. N. Jackson, Thin Solid Film, Vol.5 pp.209 , (1970).

40. L. I. Naissel and R. Glag eds., “Handbook of Thin Film
Technology”, McGraw-Hill, (1974).

41. H. S. Chen, H. J. Leamy and C. E. Miller, “Preparation of glassy metals”, Annual Review of Materials Science, Vol.10, pp.363-391, (1980).

42. L. Kramer, Ann. Phys., Vol.19, pp.37, (1934).

43. J. S. Benjamin and T. E. Volin, Metall. Trans., Vol.5, pp1923, (1974).

44. Y. Fujii, K. Kitamura, A. Onodera, et al. “A new high-pressure of PbTe above 16 Gpa”, solid state commun, vol.49, pp.135-139, (1989).

45. S.Desgreniers, “high-density phases of ZnO: structural and compressive parameters”, Physical Review B, vol.58, pp.14102-14105, (1998).

46. H. K. Mao, Y. Wu, R. J. Hemily, L. C. Chen, J. F. Shu, “X-ray diffraction to 302 Gigapascals: high pressure crystal structure of cesium iodide”, Science, Vol.246, pp.649-651, (1989).

47. H. K. Mao, R. J. Hemily, Science, Vol.244, pp.1462-1465, (1989).

48. K. Takemura, S. Minomura, O. Shimomura, Y. Fujii, “Observation of Molecular Dissociation of Iodine at High Pressure by X-Ray Diffraction”, Physical Review Letters. Vol.45, pp.1881-1884, (1980).

49. O. Mishhima, L. D. Calvert, E. Whalley, Nature, Vol.310, pp.393, (1984).

50. R. J. Hemley, A. P. Jephcoat, H. K. Mao, et al., Nature, Vol.334, pp.52, (1988).

51. A. Jayaraman, D. L. Wood, R. G. Sr. Maines, “High-pressure Raman study of the vibrational modes in ALPO4and SIO2 (alpha-quartz)”, Physical Review B. Vol.35, pp.8316-8321, (1987).

52. H. Sankaran, S. K. Sikka, S. M. Sharma, R. Chidambaram, “Pressure induced noncrystalline phase of LiKSO4”, Physical Review B. Vol.38, pp.170-173, (1988).

53. A. Jayaraman, G. A. Kourouklis, A. S. Cooper, G. P. Espinosa, “High-pressure Raman and optical absorption studies on lead pyroniobate (Pb2Nb2O7) and pressure-induced phase transitions”, Journal of Physical Chemistry, Vol.94,
pp.1091-1094, (1990).

54. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath ”, Journal of Chemical Physics, Vol.81, No.8, pp. 3684-3690, (1984).

55. J.M. Haile. Molecular dynamics simulation :/elementary methods, New York , 1992.

56. Y. Waseda, The structure of Non-crystalline Materials, Mcgraw Hill, New York, pp.292, (1980).

57. F. E. Luborsky, “Amorphous Metallic Alloys”, Butterworths Monographs in Materials, London, UK, pp19-20, (1983).

58. D. A. Porter, K. E. Easterling, “Phase transformations in metals and alloys”, London, Chapman & Hall, New York, (1992).

59. D. W. Heermann, “Computer Simulation Method”, Springer-Verlag, Berlin, (1990).

60. M. Meyer et al., “Computer Simulation in Material Science”, Series E: Applied Sciences Vol. 205, Kluwer Academic, Dordrecht, (1991).

61. M. P. Allen et al., “Computer Simulation in Chemical Physics ”, Series C: Mathematical and Physical Sciences Vol. 397, Kluwer Academic, Dordrecht, (1992).

62. J. M. Haile, “Molecular Dynamics Simulation”, John Wiley & Sons, New York, (1992).

63. D. C. Rapaport. “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London, (1997).

64. W. Oldfield , Transactions of The Metallurgical Society of AIME , vol.59, pp.945, (1966).

65. A. PosadaAmarillas, IL. Garzon, “Microstructural analysis of simulated liquid and amorphous Ni”, Physical Review B, Vol.53, No.13, pp.8363-8368, (1996).

66. J. Koga, K. Nishio, T. Yamaguchi, et al. “Tight-binding molecular dynamics study on the structural change of amorphous germanium with the increase of density”, Journal of The Physical Society of Japan. Vol.73, No.2, pp.388-396, (2004).

67. T. Zhang, AL. Wu, L. Guan, et al. “Molecular dynamics simulation in the rapid cooling process of liquid Cu”, Acta Chimica Sinica. Vol.61, No.9, pp.1357-1361, (2003).

68. T. Zhang, XR. Zhang, L. Guan, et al. “The simulation of metal Cu in the melting and solidification process”, Acta Metallurgica Sinica. Vol.40, No.3, pp. 251-256, (2004).

69. GX. Li, YF. Liang, ZG Zhu, et al. “Microstructural analysis of the radial distribution function for liquid and amorphous Al”, Journal of Physics: Condensed Matter. Vol.15, No.14, pp.2259-2267, (2003).

70. Y. Gurler, S. Ozgen. “The calculations of P-T diagrams of Ni and Al using molecular dynamics simulation”, Materials Letters. Vol.57, No.26-27, pp.4336-4343, (2003).

71. HR. Cong, XF. Bian, JX. Zhang, et al. “Structure
properties of Cu-Ni alloys at the rapid cooling rate using embedded atom method”, Materials Science and Engineering . Vol.326, No.2, pp.343-347, (2002).

72. CY. Xu, T. Zhang, AL. Wu, et al. “Molecular dynamics simulations of liquid NiAl3 in the cooling processes”, Acta Metallurgica Sinica. Vol.38, No.3, pp.321-325, (2002).

73. Y. Qi, T. Cagin, Y. Kimura, Goddard WA, “Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni”, Physical Review B, Vol.59, No.5, pp.3527-3533, (1999).

74. L. Hui, F. Pederiva, “Anomalies in liquid structure of alloys during a rapid cooling process”, Physical Review B, Vol.68, No.5, pp.054210-1~054210-5, (2003).

75. L. Wang, X. F. Bian, H. Li, “Structural characteristics of alloy melt and crystal growth by molecular dynamics simulation”, Materials Letters, Vol.51, No.1, pp.7-13, (2001).

76. J. H. He, H. W. Sheng, P. J. Schilling, et al. “Amorphous structures in the immiscible Ag-Ni system ”, Physical Review Letters Vol.86, No.13, pp.2826-2829, (2001).

77. F. Delogu, “A molecular dynamics study on the role of localised lattice distortions in the formation of Ni-Zr metallic glasses”, Materials Science Andengineering A 539, pp.52-61, (2003).

78. F. Cleri, V. Rosato, “Tight-binding potentials for transition metals and alloys”, Physical Review B, Vol.48, pp.22-33, (1993).

79. B. Luther, et al., Proc. EKE. VLSI Multilevel Interconnections Conf., Santa clara, CA, USA, 8-9 June, 15(1993).

80. A. Cros, M. O. Aboelfotoh, K. N. Tu, “Formation, oxidation, electronic, and electrical properties of copper silicides”, Journal of Applied Physics, Vol.67, pp.3328-3336, (1990).

81. D. Levine , P. J. Steinhardt, “Quasicrystals: A New Class of Ordered Structures”, Physical Review Letters, Vol.53, pp.2477-2480, (1984).

82. X. Yingfan, H. Xinming, W. Wenkui, “Preparation of bulk metallic glass Pd40Ni40P20 under high pressure”, Applied physics Letter, Vol.56, No.20, pp.1957-1958, (1990).

83. Z. Mao, H. Chen, W. Wang, “Formation of bulk metallic glass by high pressure quenching ”, Vol.6, No.3, pp.212-215, (1992).

84. W. H. Wang, P. Wen, D. Q. Zhao, and M. X. Pan, “Nucleation and growth in bulk metallic glass under high pressure investigated using in situ x-ray diffraction” , Applied Physics Letters, Vol.83, No.25, pp.5202-5204, (2003).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔