(3.238.249.17) 您好!臺灣時間:2021/04/14 13:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳舜如
研究生(外文):Shun-Ju Wu
論文名稱:運用模糊集群調配二審法院民庭人力資源之研究
論文名稱(外文):A Study on Allocating Manpower Resource for Civil Cases of Secondary Court by Fuzzy Clustering Analysis
指導教授:陳澤生陳澤生引用關係
指導教授(外文):Tse-Sheng Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工學院工程管理專班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:61
中文關鍵詞:因素分析人力資源SPSS模糊集群分析法
外文關鍵詞:manpower resourceSPSSFuzzy clustering analysisFactor analysis
相關次數:
  • 被引用被引用:9
  • 點閱點閱:206
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
  司法改革、司法再造、司法獨立是民主社會人民的需要,為實現「司法為民的理念」,絕大多數的司法機關同仁均致力於各項業務的革新,期能提昇司法工作的品質,建立權責相符的正確觀念;在司法機關組織中除司法專業的人員外,尚有一些具有資訊專精領域,可使用其專業知識提供更講求程序正義及品質、公平之處理程序,使得司法改革不再是黑箱人工作業,而是更具專業品質、效率、公開、合理的處理方法。在此篇論文中即是運用模糊集群分析法將二審民事法官指派庭別時相關的考慮因素及不可量化指標,以因素分析將資料做有系統的歸類,形成有規則之狀態,達到以簡馭繁的目的;文中先對相關理論做簡介,並說明理論架構及判斷法則;運用以上方法的分析評估,搜尋出有價值的隱藏事件,能從資料中獲得有意義的資訊並歸納出具結構化的型式,作為決策之參考;並實際推演出一套較合乎法官理想中公平分庭指派方式,運用SPSS及fuzzyTECH 5.54e for Professional Demo套裝軟體,解決資料內衝突關係及移走多餘的資料,產生典型代表性的取樣資料,達到驗證之程序,讓模式擬適用於二審法院民庭人力資源調配工作。
  Judicial Reform, Judicial Regeneration and Judicial Independency are the necessities for people in a democratic society. In order to realize the concept of "justice is for people", most staffs in the judicial organization have been trying to operate reformation from all aspects hoping to promote its quality and giving the idea of "correspondence between authority and duty" on their justice affair. In addition to judicial expertise, Information Technology serves as another important role in pursuing the procedure correct and improving the quality and fairness in judicial reform. With the aid of IT specialization, judicial reform can get away from the black box and become a more professional method in favor of efficiency, openness, and reasonableness. This thesis applies fuzzy clustering analysis to analyze the factors and immeasurable indications in allocating manpower resource for civil cases of secondary court. Systematizing the classification and regulating the rules of these elements are the keys in this study to achieve the goal of controlling the numerous and diverse by simplification. Firstly the relevant theories are introduced. The theoretical frameworks and their judgment principles are also demonstrated. Through the mentioned approaches, the hidden contents are hopefully revealed and the meaningful data will be formulated into the structured styles. Both of them are working as references in decision-making. The ideal way of dispatching the fair chamber for judges can be drawn practically by the proposed model. The SPSS and fuzzyTECH 5.54e for professional demo package software are run as research tools. A few results can be foreseen including conflicts solving, redundancy reducing, typical representative sample data producing, and achieving the confirmation of the procedure. It will try to be applied in the dispatching manpower for civil cases of secondary court.
摘要 I
ABSTRACT II
謝誌 III
目錄 IV
表目錄 VI
圖目錄 VII
中英文縮寫全名對照 VIII
第1章 緒論 1
1-1研究背景與動機 1
1-2研究目的 2
1-3研究方法及流程 2
1-4研究範圍 4
1-5章節概要 4
第2章 文獻探討 6
2-1法官人力不足探討 6
2-2法官分庭指派方式 8
2-3資料探勘的過程與架構 10
2-4因素分析 11
2-5集群分析 13
2-6模糊集群分析 15
2-7相關集群分析法比較 19
第3章 研究設計與方法 22
3-1作業流程說明 23
3-2資料取得及名詞定義 29
3-3實際進行方法及時程 35
第4章 研究結果之探討 37
4-1運用SPSS進行因素分析 37
4-2運用fuzzyTECH 5.54e for Professional Demo進行法官分庭指派
模糊集群分析 43
4-3綜合判斷 48
第5章 結論與建議 50
5-1結論 50
5-2建議 51
參考文獻 53
附錄A 87至91年各類統計數據 56
附錄B 87至91年各類統計圖表 59
壹、 中文部分
[1]江俊彥,「應用分群法提昇關聯法則效率之研究」,國立屏東科技大學資訊管理所碩士論文,2002。
[2]何信瑩,「設計最佳化之演化模糊決策樹」,私立逢甲大學資訊工程所碩士論文,2001。
[3]吳萬益、林清河合著,企業研究方法,華泰文化事業股份有限公司,2001,第505∼530頁。
[4]林育臣,「群聚技術之研究」,私立朝陽科技大學資訊管理所碩士論文,2002。
[5]林原宏,「模糊潛在知識空間之整合模式與應用」,國立政治大學教育學系博士論文,1999。
[6]秉昱科技,模糊邏輯與類神經模糊在商業和財政的應用,儒林圖書有限公司,2001,第三章第43∼66頁。
[7]徐村和,「模糊群聚於群組定位之應用」,私立義守大學企業管理學系發表文章,2001。
[8]陳育甄,「模糊層級分析法應用於城際運具選擇模式之研究」,國立成功大學都市計劃所碩士論文,2002。
貳、英文部分
[9]Agrawal R., Gehrke J., Gunopulos D. and Raghavan P., "Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications," Int. Conf. Management of Data, Seattle, Washington, 1998, pp. 94-105.
[10]Agrawal R., Mannila H., Srikant R., Toivonen H. and Verkamo A. 1., "Fast discovery of association rules," Advances in Knowledge Discovery and Data Mining.AAAI/MIT Press, 1995, chapterl2, pp.307-328.
[11]Alfred, S.B., "Market segmentation by personal values and salient product attributes," Journal of Advertising Research, Vol. 21, No. I, pp. 29-35,1982.
[12]Ankerst M., Breunig M., Kriegel H.P. and Sander J., "OPTICS: Ordering points to identic the clustering structure," In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD 9), Philadelphia, PA, June 1999, pp.49-60.
[13]Cheng C. H., Fu A.W. and Zhang Y., "Entropy-based subspace clustering for mining numerical data," Int. Conf. Knowledge Discovery and Data Mining(KDD 9), San Diego, CA, USA, August 1999, pp. 84-93.
[14]Dash M., Liu M. and Xu X., '" l+l>2': Merging Distance and Density Based Clustering," In Proc. 7th Int. Conf. Database Systems for Advanced Applications (DASFAA'OI), Hong Kong, April 2001, pp. 18-20.
[15]Ester M., Kriegel H.P., Sander J., Wimmer M. and Xu X., "Incremental Clustering for Mining in a Data Warehousing Environment," In Proc. 24th Int. Conf. Very Large Databases (VLDB'98), New York City, NY, USA,Aug.1998, pp.24-27.
[16]Ester M., Kriegel H. R, Sander J. and Xu X., "Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, "In Proc. 1996 Int Conf. Knowledge Discovery and Data Mining(KDD 6),Portland,OR,Aug.1996, pp.226-231.
[17]Estivill-CastroV.and Lee I., "AUTOCLUST: Automatic Clustering via Boundary Extraction for Massive Point Data Sets, "In Proc. 5th .Conf Geo -Computation, University of Greenwich, Kent, UK.. Aug. 2000, pp.23-25.
[18]Estivill-CastroV.and Lee1.,"AMOEBA:HierarchicalClustering Based on Spatial Proximity Using Delaunay Diagram,"In Proc.9th .Int. Spatial Data Handling(SDH2000),Beijing,China,Aug.2000, pp.10-12.
[19]Guha S.,Rastogi R.and Shim K.,"CURE: An efficient clustering algorithm for large databases,"In Proc.1998 ACM-SIGMOD Int. Conf. Management of Data(SIGMOD 8),Seattle,WA,June 1998, pp.73-84.
[20]GuhaS.,RastogiR.and Shim K.,"ROCK:A Robust Clustering Algorithm For Categorical Attribute,"In Proc.1999 Int. Conf. Data Engineering(ICDE 9),Sydney,Australia,Mar.1999, pp.512-521.
[21]Han J.and KamberM., "DataMining: Concepts and Techniques," Morgan Kaufmann,2000.
[22]Huang Z.," Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values,"Data Mining and Knowledge Discovery,1998,Vol. 2,pp.283-304.
[23]Karypis G., Han E.H. and Kumar V.,"CHAMELEON: Hierarchical Clustering Using Dynamic Modeling,"IEEE Computer, 1999, Vol.32,No.8.pp.68-75.
[24]Kaufman L. and Rousseeuw PJ, "Find Groups in Data:an Introduction to Cluster Analysis ," JohnWiley & Sons, 1990.
[25]Kaufman, L. & Rousseevw, P. J. Finding groups in data: An introduction to cluster analysis. New York: John Wiley & Sons, Inc, 1991.
[26]MacQueen J.,"Some Methods for Classification and Analysis of Multivariate Observations,"In Proc. 5th Berkeley Symp. Math. Stat. And Prob.,1967, Vol.1,pp.281-297.
[27]Ng R.and Han J.,"Efficient Clustering Method for Spatial Database Mining,"In Proc.1994 Int. Conf. Very Large Database (VLDB 4),Santiago,Chile,Sept.1994, pp.144-155.
[28]PrideW.H.and Ferrell O.C.,"Marketing," Ninth Edition, Houghton Mifflin, 1995.
[29]Ruspini, E. Numerical Methods for Fuzzy Clustering. Inf. Sci., 1970, pp.319-350.
[30]SanderJ.,EsterM.,Kriegel H.P.and Xu X.," Density-Based Clustering in Spatial Dtaabases:The Algorithm GDBSCAN and its Applications," In Proc. Int. Conf. Data mining and Knowledge Didcovery,Kluwer Academic Publishers,1998,Vol.2,No.2.
[31]Sheikholeslami G., Chatteljee S., and Zhang A., "Wave Cluster: A multi-resolution clustering approach for very large spatial databases, "In Proc.1998 Int. Conf. Very Large Database(VLDB 8),New York,Aug.1998, pp.428-439.
[32]Teicher, H., Identifiably of finite mixtures. Ann. Math. Stats.,1963, pp.1265-1269.
[33]Trauwaert, E., Rousseeuw, P. & Kaufman, L. Fuzzy clusters by minimizing the total hypervolum. In O.Opitz, B.lausen, & R. Klar(Eds), Information and classification. Berlin: Springer-Verlag, 1993.
[34]Wang W., Yang and Muntz R.,"STING: A Statistical Information grid Approach to Spatial Data Mining," In Proc. 1997 Int. Conf. Very Large Data Bases (VLDB 7), Athens, Greece, Aug.1997, pp.186-195.
[35]Wendell, R.S.," Product differentiation and market segmentation as alternative marketing strategies," Journal Of Marketing, 1956, Vol.21, pp.3-8.
[36]Xu X. ,Ester M. , Kriegel H.P. and Sander J.,’’A distribution-based Clustering Algorithm for Mining in Large Spatial Databases,’’ In Proc. 14th Int. Conf. Data Engineering (ICDE’98), Orlando, Florida, USA, 1998.
[37]Yang,M. S. Convergence properties of the generalized fuzzy c-means clustering algorithms, Computer Math Appl., 1993, pp3-11.
[38]Yang, M.S. On a class of fuzzy classification maximum likelihood procedures. Fuzzy Sets and Systems, 1993, pp.365-375.
[39]Zadeh, L.A. Fuzzy sets, Information & control, Vol. 8, 1965, pp.338-353.
[40]Zhang T.,Ramakrishnan R.and Livny M.,"BIRCH: An Efficient Data Clustering Method for Very Large Databases,’’In Proc. 1996 ACM-SIGMOD Int Conf management of Data (SIGMOD 6),1996, pp.103-114.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔