(18.204.2.190) 您好!臺灣時間:2021/04/22 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王月芳
研究生(外文):Yue-Fang Wang
論文名稱:應用類神經網路於服裝布料之電腦輔助設計
論文名稱(外文):Computer Aided Design for Garment Fabric using Neural Network Algorithm
指導教授:謝孟達謝孟達引用關係
指導教授(外文):Meng-Dar Sheih
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業設計學系碩博士班
學門:設計學門
學類:產品設計學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:121
中文關鍵詞:類神經網路-倒傳遞模式遺傳演算法布料色彩黏著度紋理感性語彙
外文關鍵詞:Back-Propagation NetworksfabricGenetic AlgorithmColor Coherent Vector(CCV)kansei wordtexture
相關次數:
  • 被引用被引用:6
  • 點閱點閱:290
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:5
  本研究的目的在於建立一布料設計自動化的流程,運用類神經網路進行學習,再利用遺傳演算法將設計構想做有效的大量發散,將人類的感性思維帶入電腦程式運算中,使設計流程中之構想發展階段,藉由設計自動化達到更高的效率,刺激設計師靈感發散,提高布料設計構想發展的品質,降低設計的流程與成本。

  以往設計師進行構想發展階段時,採用的是傳統手工繪製草圖,然而此一傳統方式在追求高效率高度競爭的經濟環境下,已然不適用。產品的生命週期明顯較以往縮短,加上電腦輔助設計軟體的技術進步,更縮短了產品設計時程。本研究著眼於設計流程中之構想發展階段,導入自動化設計概念,以期能獲得大量、快速且有用的設計構想,藉此激發設計師的創造力。

  本研究方法是利用集群分析,將蒐集而得的女性衣服布料予以分群,挑選出代表性布料40張,將其以問卷對九組感性語彙對進行評分;抽取出布料的色彩黏著度當作其色彩特徵,並利用「極座標的傅立葉-小波描述子」(Polar Fourier-Wavelet descriptor)PFW之演算法抽取出布料的紋理特徵。以特徵值為輸入層,感性語彙得分為輸出層,進行倒傳遞類神經網路訓練。再將抽取出的布料特徵,運用遺傳演算法產生大量的特徵子代,並以學習成功的倒傳遞類神經網路為其評選標準,取得符合的特徵值,再依其特徵值產生新的布料。
The purpose of the research was to build a process of computer aided design for fabric. This paper calculated human percept with computer program, to learn with Neural Network Algorithm and to obtain a lot of concepts effectively with Genetic Algorithm. In the stage of conceptual design, it can increase efficiency and productivity by automatic design, stimulate designers’ imagination, improve the quality of fabric design, and reduce the cost of design process.

In the stage of conceptual design, designers are used to sketch by hand traditionally. However, the traditional way has not been suitable in this competitive economy. Because the cycle of productions is shortened and the technology of computer aided design improves obviously, the time for product design is reduced. This paper’s emphasis on the concept of automatic design is broached in the stage of conceptual design. It is looking forward to gaining a large number, fast and useful concept to encourage designers' creation.

At first, this paper uses Cluster Analysis. Female garments fabrics assembled were divided into groups and then we chose 40 representative fabrics from these groups. The subjects were invited to measure their subjective impression of 40 different fabric images using the Semantic Differential Method (SD). Second, we extracted Color Coherent Vector(CCV)as the color features of garments and the texture features of garments using Polar Fourier-Wavelet descriptor. The input layer is the features of garments and the output layer is the value of 9 impression words. The Back-Propagation Networks (BPN)was trained to approximate the relationship between kansei features and the features of garments. Third, we obtained a large number of filial generations by Genetic Algorithm, selected suitable filial generations by the successfully trained back-propagation network, and obtained new fabrics.
第一章 緒論
1-1 前言 …………………………………………………………… 1
1-2 研究動機 ………………………………………………………… 1
1-3 研究目的 ………………………………………………………… 3
1-4 研究範圍與限制 ………………………………………………… 4
1-5 研究架構 ………………………………………………………… 4
1-6 預期貢獻 ………………………………………………………… 6
1-7 論文內容說明 ……………………………………………………… 7

第二章 文獻探討
2-1 類神經網路 ……………………………………………………… 9
2-2 遺傳演算法 ……………………………………………………… 9
2-3 感性工學 ………………………………………………………… 10
2-4 色彩體系與人類視覺感知 …………………………………… 11
2-5 現有相關研究成果 ………………………………………… 14
2-5.1 影像搜尋 ……………………………………………… 14
2-5.2 色彩特徵 ……………………………………………… 15
2-5.3 紋理特徵 ……………………………………………… 19

第三章 研究理論架構
3-1 類神經網路 ……………………………………………………… 25
3-1.1 類神經網路架構 ………………………………………… 26
3-1.2 倒傳遞類神經網路架構 …………………………… 28
3-1.3 類神經網路的應用 ……………………………… 30
3-1.4 應用類神經網路於產品設計之探討 …………………… 31
3-2 遺傳演算法 ……………………………………………………… 32
3-2.1 遺傳演算法概述 ………………………………………… 32
3-2.2 遺傳演算法架構與流程 …………………………… 32
3-2.3 遺傳演算法的應用 ……………………………… 38
3-2.4 遺傳演算法於產品設計之探討 ……………………… 40

第四章 研究方法與步驟
4-1 研究步驟 ………………………………………………………… 42
4-2 樣本布料選定 ……………………………………………………… 44
4-3 感性語彙對選定 …………………………………………………… 48
4-4 問卷 …………………………………………………………… 49
4-5 布料圖片的特徵分析 ……………………………………………… 50
4-5.1 布料圖片色彩特徵的抽取 ………………………… 50
4-5.2 布料圖片紋理特徵的抽取 ………………………… 51
4-6 倒傳遞類神經網路訓練 ……………………………………… 53
4-6.1 色彩特徵與感性語彙對 …………………………… 55
4-6.2 紋理特徵與感性語彙對 …………………………… 60
4-6.3 色彩特徵及紋理特徵與感性語彙對 …………………… 63
4-7 產生新的色彩特徵 ………………………………………… 67

第五章 結論與未來展望
5-1 遺傳演算法應用探討 …………………………………………… 78
5-2 類神經網路應用探討 ……………………………………… 78
5-2.1 色彩特徵與感性語彙對 ……………………………… 78
5-2.2 紋理特徵與感性語彙對 …………………………… 79
5-2.3 色彩特徵及紋理特徵與感性語彙對 …………………… 79
5-3 程式內容探討 ……………………………………………………… 80
5-4 研究貢獻 ……………………………………………………… 80
5-5 未來展望 ………………………………………………………… 80

參考文獻…………………………………………………………………………………… 82

附錄………………………………………………………………………………………… 85
1. A. Laine, and J. Fan, “Texture classification by wavelet packet signatures”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15,No. 11, November 1993.

2. Aleksandra Mojsilovic and Jianying Hu, “A Method for Color Content Matching of Images, ” IEEE International Conference on Multimedia and Expo (II), pp. 649-652, 2000.

3. Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing, ” Pearson Education, 2002.

4. E. R. Dougherty and J. C. Handley, “Recursive maximum-likelihood estimation in the one-dimensional discrete Boolean random set model, ” J. Signal Process., vol. 43, pp. 1–15, 1995.

5. Flickner, M. et al., “Query by image and video content: The qbic system, ”IEEE Computers, pp. 23-31, 1995.

6. García-Sevilla Pedro and Maria Petrou, “Analysis of Irregularly Shaped Texture Regions, ” Computer Vision and Image Understanding, vol. 84, pp. 62-76, October 2001.

7. G. Chen, and T. D. Bui, “Invariant Fourier-wavelet descriptor for pattern recognition”, Pattern Recognition, Vol. 32, pp.1083-1088, 1999.

8. Greg Pass, Ramin Zabih, and Justin Miller, “Comparing images using color coherence vectors”, In Proceedings of ACM Multimedia 96, pp. 65-73, Boston, MA, USA, 1996.

9. Hideyuki Tamura, Shunji Mori, and Takashi Yamawaki, “Texture features corresponding to visual perception, ” IEEE Transactions on Systems, Man, and Cybernetics, No. 6, JUN 1978.

10.http://www.nacs.uci.edu/~wiedeman/cspace/me/inforgb.html.

11.http://www.intl-light.com/handbook/ch01.html.

12.I.K. Sethi and I. Coman,, “Image retrieval using hierarchical self-organizing feature maps,” Vision and Neural Networks Laboratory, Department of Computer Science, Wayne State University, pp.1337-1345, 1999.

13.Ishihara, S.I., Keiko, “Nagamachi. etal, An automatic builder for a Kansei Engineering expert system using self-organizing neural networks, ”International Journal of Industrial Ergonomics, 15(1): p. 13-24, 1995.

14.J. H.Holland, “Adaptation in Natural and Artificial Systems”, Bradford Books, 1975.

15.Jing Huang and Ramin Zabih, “Combining color and spatial information for content-based image retrieval”, European Conference on Digital Libraries, September 1998 (web proceedings only). http://www.cs.cornell.edu/rdz

16.J. R. Smith, and Shih-Fu Chang, “Single color extraction and image query”, In Proceedings of International Conference on Image Processing, Vol. 3, pp.528-531, 1995.

17.K. I. Laws, “Texture image segmentation, ” Ph.D. dissertation, Image Processing Inst., Univ. of Southern California, 1980.

18.Li Wang, and Dong-Chen He, “Texture classfication using texture specturm”, Pattern Recognition, Vol. 23, No. 8, pp.905-910, 1990.

19.M. D. Shieh and C. C. Cheng, “Development of an Intelligent Fabric Retrieval System using Computer-Based Kansei Algorithm, ”Journal of the Asian Design International Conference, Vol.1, 2003.

20.Minami, K.,Nakajima H. and Toyoshima, T. “Real-time Discrimination of Ventricular Tachyarrhythmia with Fourier-Transform Neural Network” IEEE Trans. On Biomed. Eng. Vol.46, No.2,pp.179-185,1999.

21.Nagamachi, M., “Kansei engineering as a powerful consumer-oriented technology for product development, ”Applied Ergonomics, 33(3): p. 289-294, 2002.

22.Nakada, K., “Kansei engineering research on the design
of construction machinery, ” International Journal of Industrial Ergonomics, 19(2): pp. 129-146, 1997.

23.P.Garcia-Sevilla and M.Petrou, “Classification of binary textures using the 1-D Boolean model” IEEE Transactions of Image Processing, Vol 8, No 10, pp. 1457-1462, 1999.

24.R. M. Haralick, “Statistical and structural approaches to texture,” Proceedings of The IEEE, Vol.67, No. 5, MAY 1979.

25.R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, No. 6, November 1973.

26.T. Chang and C.C.J. Kuo, “Texture analysis and classification with tree-structured wavelet transform, ”IEEE Trans. IP, vol. 2, no. 4, pp. 429-441, 1993.

27.T. Ojala, and M. Pietikainen, “Unsupervised texture segmentation using feature distributions”, Pattern Recognition, Vol. 32, pp.477-486, 1999.

28.Vincenzo Di Lecce and Andrea Guerriero, “An Evaluation of the Effectiveness of Image Features for Image Retrieval,” JVCIR(10), No. 4, pp. 351-362, December 1999.

29.Wael M. Al-Hasawi, , Khaled M. El-Naggar, “A genetic based algorithm for voltage flicker measurement”,2004.

30.W. Niblack, R. Barber, and et al, “The QBIC project: Querying images by content using color, texture and shape,” In Proc. SPIE Storage and Retrieval for Image and Video Databases, Feb. 1994.

31.Xiang Sean Zhou, Thomas S. Huang, “Image Retrieval: Feature Primitives, Feature Representation, and Relevance Feedback,” IEEE Workshop on Content-Based Access of Image and Video Libraries, in Conjunction with CVPR'00, pp. 10-
14, 2000.

32.Xie, X.Y.M., “Hand image segmentation using color and
RCE neural networ, ” Computational Intelligence in Robotics and AutomationIEEE International Symposium , 34: p. 235-250, 2001.

33.X. Rui, C.-H. Chang and T. Srikanthan, “On the Initialization and Training Methods for Kohonen Self-Organizing Feature Maps in Color Image Quantization, ” DELTA , pp. 321-325, 2002.

34.尹柏元,“以遺傳演算法與權重式最近鄰居分類法篩選遺傳疾病基因之研究”, 長庚大學資訊管理研究所碩士論文,2003。

35.李宏傑,“基於紋理與色彩特徵的影像檢索系統之研究”,淡江大學電機工程學系電子電路組碩士班, 2001。

36.周明,孫樹棟,“遺傳法原理應用”,國防工業出版社,北京,1998。

37.連國珍,“數位影像處理”,儒林圖書公司,台北市,民國89 年。

38.黃代鈞,“以遺傳演算法結合貝氏分類法快速篩選與遺傳疾病相關的基因”, 長庚大學資訊管理研究所碩士論文,2003。

39.楊明燿,“利用小波與類神經網路進行心電圖特徵擷取與病症分類”,私立中原大學醫學工程學系碩士論文,1997。

40.楊朝樑,“使用主要元素分析神經網路的心電圖病症辨識系統”,國立中正大學電機工程研究所碩士論文,2002。

41.鄭家杰,“影像搜尋系統輔助配色之研究-以布料影像為例”,國立成功大學工業設計學系研究所碩士論文,2003。

42.蕭世文, “類神經網路在產品造形設計上的應用研究”, 國立成功大學工 業設計研究所, 1990。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3.呂東吉(1999),國科會產學合作研究計畫對提昇國內產業技術之功能,科學發展月刊,第二十七卷,第二期,頁103-117。
2. 5.杜瑞澤(1996),產學合作於設計教育之重要性研究,工業設計,第25卷2期,頁2-5。
3. 8.邱宏達,魏明堂(2002),知識經濟衝擊下產學合作政策的創新與挑戰,內湖高工學報,頁69-79。
4. 12.侯君溥(1998),產學合作之現況與推動,生物產業,第九卷,第二期,頁87-94。
5. 15.黃英忠,葉俶禎,蔡正飛,陳錦輝(2002),從交易成本理論探討暑期專案研究作為管理教育之產學合作模式,商管科技季刊,第三卷,第三期,頁229-247。
6. 17.陳歆(2001),大學知識的商品化-產學合作,智慧財產權,頁76-93。
7. 18.陳鴻慶(2001),產學合作的具體作法,技術及職業教育雙月刊,第六十一期,頁57-61。
8. 19.陳志煌(2000),產學合作研究計畫業務檢討與改進,科學發展月刊,頁921-927。
9. 21.許文秀,曾美君(2000),國科會產學合作計畫之經濟誘因分析,科技管理學刊,第五卷,第三期,頁155-163。
10. 22.許文秀,張保隆(2000),中小企業創新模式之探討-產學合作計畫案例分析,科技管理學刊,第五卷,第一期,頁167-187。
11. 26.曾銘深(1999),OECD國家推動產學合作之作法,經濟情勢暨評論,第五卷,第三期,頁80-98。
12. 27.楊朝祥(2002),建置產學合作新關係,國家政策論壇,第二卷,第二期,頁178-181。
13. 29.劉孟俊(2001),美國產學合作體系改革與影響,經濟前瞻,頁106-110。
14. 30.劉江彬,林佩芬(1999),美國大學在產業技術發展中所扮演之角色,科技管理學刊,第四卷,第一期,頁73-98。
15. 33.戴曉霞(2000),新世紀高等教育的展望:回顧與前瞻,教育研究集刊,頁35-59。
 
系統版面圖檔 系統版面圖檔