跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/15 05:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝琮瀚
研究生(外文):Cong-Han Hsieh
論文名稱:氮化鋁陶瓷材料之微波燒結研究
論文名稱(外文):Microwave Sintering of AlN Ceramics
指導教授:鐘賢龍
指導教授(外文):Shyan-Lung Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:84
中文關鍵詞:微波燒結氮化鋁
外文關鍵詞:microwavesinteringAlN
相關次數:
  • 被引用被引用:9
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  氮化鋁陶瓷材料具有高熱傳導值、高絕緣電阻、低介電常數與低熱膨脹係數等優異性質,因此在電子基板方面之應用具有極大潛力,但是由於目前氮化鋁粉體價格昂貴,使得氮化鋁陶瓷材料之應用無法普及化。
  本研究利用單模腔之微波燒結爐進行高熱傳導氮化鋁陶瓷材料的燒結,並針對本實驗室燃燒合成法(SHS)製備之氮化鋁粉體與微波快速加熱節省能源的優點,達到低成本的合成與應用。
  首先將燃燒合成法之氮化鋁產物以Attritor球磨機用氧化鋯磨球研磨至所需粒徑,接著加入助劑與結合劑,再經過壓胚成形、微波燒結等步驟達到緻密,最後再對燒結體作密度、熱傳導值、晶相、顯微結構……等各種分析與討論。
  研究中發現當以氧化釔作為燒結助劑時,以添加5wt%助劑量於1900℃持溫30分鐘可達到最佳之收縮率18.07%、體密度3.30g/cm3及熱傳導值153.38W/m-K;然而採用氧化釔-碳酸鋰複合助劑時,5wt%Y2O3+1wt% Li2CO3可於1700℃持溫30分鐘達到體密度3.15 g/cm3與熱傳導值112.97 W/m- K,比5wt% Y2O3在1700℃持溫30分鐘之體密度2.80 g/cm3與熱傳導值80.20 W/m-K,要有更佳之燒結效果;當延長燒結時間時更可得到較佳之晶形與更高的熱傳導值。5wt%Y2O3+1wt% Li2CO3於1700℃延長燒結時間,在120分鐘之持溫時間後可得體密度3.21 g/cm3與熱傳導值156.79W/m-K;添5wt%Y2O3+1wt% Li2CO3助劑1900℃燒結時,小粒徑分佈粉體在燒結方面可得到較佳之體密度之3.33 g/cm3,但較高的氧含量卻不利於熱傳導值110.57 W/m-K。
  High thermal conductivity, good electrical insulation, low dielectric constant, and low thermal expansion coefficient make aluminum nitride a very promising ceramic material for electronic substrate applications. However, the high cost of this material lead it to popularization hardly.
  The single-mode microwave furnace was used to sinter high thermal conductivity AlN ceramics. For the combustion synthesized AlN product and the advantages of microwave sintering the fast heating and saving of energy we can get the cheaper synthesize and applications.
  First, the synthesized AlN product was milled to desired sizes by using an attritor with ZrO2 balls. The powder was mixed with additives and binder. Then, made to green bodies, and microwave sintering. Last, we studied the density, thermal conductivity, grain, and microstructure with the sintered body.
  In the study, we found that using Y2O3 as the additive for sintering, 5wt% of the amount of Y2O3 sintering in 1900℃for 30 minutes can get the best shrin- kage (18.07%), density (3.30g/cm3) and thermal conductivity (153.38W/m-K). However using the Y2O3-Li2CO3 complex additive, it can get the higher density and better thermal conductivity (ρ=3.15 g/cm3, k=112.97 W/m- K) then only using Y2O3 additive(ρ=2.80 g/cm3, k=80.20 W/m- K). As sintering for 120 minutes with the Y2O3-Li2CO3 complex additive, we can gain the density, 3.21 g/cm3 and, an especially high thermal conductivity, 156.79W/m-K. Sintering with small particles size with complex additive, we can get the high density (3.33 g/cm3), but the high concentration of oxygen caused the low thermal conductivity for sintering body.
總目錄
摘要 ...................................................Ⅰ
Abstract ...............................................Ⅱ
誌謝 ...................................................Ⅲ
總目錄 .................................................Ⅳ
表目錄 .................................................Ⅸ
圖目錄 .................................................Ⅹ
第一章 緒論
1-1 氮化鋁陶瓷 .........................................1
1-2 氮化鋁基板之介簡 ...................................2
1.3 微波燒結 ..........................................3
1-4 氮化鋁之合成方法 ..................................4
1-5 SHS簡介 ............................................6
1-6 前人研究 ..........................................11
1-7 研究動機 ..........................................12
第二章 理論基礎
2-1 氮化鋁的特性 ......................................14
2-2 熱傳導機構 ........................................15
2-3 微波加熱概論 ......................................17
2-3-1 何謂微波 .........................................17
2-3-2 微波爐的組成 ....................................18
2-3-3 微波加熱原理 ....................................18
2-3-4 微波加熱與傳統加熱的區別 ........................20
2-3-5 微波加熱的特點 ..................................21
2-4 液相燒結 ..........................................22
2-5 液相燒結助劑選擇 ..................................24
2-6 測溫原理 ..........................................26
第三章 實驗裝置和藥品
3-1 粉碎研磨設備 ......................................30
3-2 燒結裝置 ..........................................30
3-3 微波測溫裝置 ......................................31
3-4 其他設備 ..........................................31
3-5 藥品和氣體 ........................................32
第四章 實驗方法
4-1 氮化鋁粉體之研磨 ..................................36
4-2 氮化鋁生胚之製作 ..................................36
4-2-1 燒結粉體之調配 ...................................36
4-2-2 生胚之成型 ......................................37
4-2-3 結合劑之去除 ....................................37
4-3 坩堝之製作 ........................................37
4-4 微波燒結 ...........................................39
4-5 粉體性質分析 .......................................40
4-5-1 粒徑分析 ........................................40
4-5-2 氮含量與氧含量分析 ..............................40
4-6 燒結體之分析 ......................................40
4-6-1 試片密度測量 ....................................40
4-6-2 理論密度之計算 ..................................41
4-6-3 線性收縮率 ......................................41
4-6-4 熱傳導性 ........................................42
4-7 晶相及微結構分析 ..................................43
4-7-1 XRD分析 ..........................................43
4-7-2 SEM分析 ..........................................43
第五章 結果與討論
5-1 燒結用AlN粉體性質...................................44
5-2 溫度變化對氮化鋁微波燒結之影響 .....................44
5-2-1 線收縮率與體密度 .................................45
5-2-2 熱傳導值分析 ....................................46
5-2-3 晶相組成分析 ....................................47
5-2-4 微結構分析 .......................................49
5-3 碳酸鋰助劑對氮化鋁微波燒結之影響 ...................50
5-3-1 線收縮率與體密度 ................................51
5-3-2 熱傳導值分析 ....................................52
5-3-3 晶相組成分析 ....................................52
5-3-4 微結構分析........................................52
5-4 添加碳酸鋰助劑長時間燒結之影響 ....................53
5-5 不同性質氮化鋁粉體對燒結之影響 ....................55
5-6 體密度與熱傳導值間之關係 ..........................57
第六章 結論與建議
6-1 結論 ..............................................78
6-2 建議 ..............................................79
參考文獻 ...............................................80
誌謝 ...................................................84
1.H. K. Sander, “High-tech Ceramics”, C&E News, July 9, (1984).
2.L. M. Sheppard, Ceramic Bulletin, 69, 1801, (1990).
3.N. Kuramoto, H. Taniguchi, and I. Aso, Am. Ceram. Soc. Bull., 68, 883, (1989).
4.T. J. Mroz, Jr., Ceramic Bulletin, 71, 782, (1992).
5.F. Miyashiro, N. Fwase, A. Tsuge, F. Ueno, M. Nakahashi and T. Takahashi, “High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages ”, IEEE Trans. Comp., Hybrids, Manuf., Technol., 13, 313, June (1990).
6.W. H. Sutton, “Microwave processing of Ceramic Materials”, Bull. Am. Ceram. Soc., 68, 376, (1989).
7.A. G. Merzhanov, and I. P. Borovinskaya, Combust. Sci. Technol. 10, 195, (1975).
8.G. Selvaduray, and L. Sheet, Mater. Sci. Technol., 9, 463, (1993).
9.F. J-H. Haussonne, Mater. Manufacturing Process 10, 717, (1995).
10.Z. A. Munri, and J. B, Holt, “The Combustion Synthesis of Refractory Nitrides”, J. Mater. Sci., 22, 710, (1987).
11.J. Karpinski, and S. Porowski, ”High Pressure Thermodynamics of GaN”, J. Crystal Growth, 66, 11, (1984).
12.(a)李威昌, ”燃燒法合成高性能材料:製程開發與反應機構探討”, 成功大學博士論文84年畢業。
(b) W. C. Lee, C. L. Tu, and S. L. Chung, J. Mater. Res., 10, 774, (1995).
(c)中華民國專利第71873號、美國第5460794號。
(d)中華民國專利第67194號、美國第5453407號。
13.林政曉, “燃燒法合成氮化鋁粉體新方法與量產技術開發”, 成功大學碩士論文88年畢業。
14.H. K. Bowen, “Basic Research Needs on High Temperature Ceramics for Energy Application”, Material Science and Engineering 44, 1, (1980).
15.J. F. Crider, “Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials”, Ceram. Eng. Sci. Proc., 3,519, (1982).
16.S. Kumar, Key Engineering Materials, 56, 183, (1991).
17.A. G. Merzhanov, “Self-Propagating High Temperature Synthesis: Twenty Years of Search and Findings”, In Combustion and Plasma Synthesis of High-Temperature Materials, edited by Z.A. Munir and J.B. Holt, VCH, New York, USA, 1, (1990).
18.Z. A. Munir, “Synthesis of High Temperature Materials by Self-Propagating Combustion Methods”, Ceram. Bull., 67, 342, (1988).
19.Y. Nagai, and G. C. Lai, “Preparation of AlN Powders by Wet Ball-Milling and Their Characterization”, Journal of the Ceramic Society of Japan, 105, 9, (1996).
20.J. Bermudo, and M. I. Osendi, “Study of AlN and Si3N4 powders synthesized by SHS reactions”, Ceramics International 25, 607, (1999).
21.The Dow Chemical Company, 美國專利第593310號, January 31, (1996).
22.S. Surnev, D. Lepkova, and A. Yoleva, “Influence of the science additives on the phase composition and the thermal conductivity of aluminium nitride ceramics”, Mater. Sci. and Eng., 10, 35, (1991).
23.K. Watari,”Densification and Thermal Conductivity of AlN Doped with Y2O3,CaO,and Li2O”, J. Am. Ceram. Soc. , 79, 3103, (1996).
24.K. Watari,”Effect sintering aids for low-temperature sintering of AlN ceramics”,J. Mater. Res.,14,(1999).
25.Y. Liu, “Low-temperature sintering of aluminum nitride with YF3-CaF2 binary additive.”, Journal of Materials science letters, 18,703,(1999).
26.G. Xu, H. Zhuang, J. Cai, and S. Xu, “Microwave Sintering of SHS-Produced AlN Powders”, Journal of Materials Synthesis and Processing, 4, 307, (1996).
27.陳信吉, “氮化鋁表面披覆之低溫燒結研究”, 成功大學碩士論文83年畢業。
28.汪建民, “陶瓷技術手冊”, 中華民國科技發展協進會, (1994)。
29.黃昌偉, “陶瓷材料之熱性質分析”, 精密陶瓷特性及檢測分析, 10,1,54.
30.W. J. Kim, D. K. Kim, and C. H. Kim, “Coating of Al2O3 Additive on AlN Powder and Its Effect on the Thermal Conductivity of AlN Ceramics”, Journal of Materials Synthesis and Processing, 3, 39, (1995).
31.劉岐山, “微波能應用”, 電子工業出版社, (1990).
32.E. T. Thostentson, and T. -W. Chou, “Microwave processing: fundamentals and applications ”, Composites: Part A 30, 1055, (1999).
33.R. M. German, Liquid Phase Sintering, Plenum, New York, (1985).
34.J. H. Harris, “Sintered Aluminum Nitride Ceramics for High-Powder Electronic Applications”, JOM, 56, (1998)
35.K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, “Effective sintering aids for low-temperature sintering of AlN ceramics”, J. Mater. Res., 14, 1409, (1999).
36.G. C. Lai, and Y. Nagai, “Effect of Oxygen on Sintering of Aluminium Nitride with Y2O3 Sintering Aid”, Journal of the Ceramic Society of Japan, 103, 7, (1994).
37.A. M. Hundere & M. A. Einarsrud, “Microstructural Development in AlN (YF3) Ceramics”, Journal of the European Ceramic Society, 17, 873, (1997).
38.A. Geith, M. Kulig, T. Hofmann, and C. Russel, “Thermal conductivity of calcium-doped aluminium nitride ceramics”, Journal of Materials Science, 28, 865, (1993).
39.張子岳, “AlN基版材料燒結之研究”, 成功大學碩士論文76年畢業。
40.E. M. Levin, C. R. Robbins, and H. F. McMurolie, “Phase Diagrams for Ceramists”, The Am. Ceram. Society, Fourth Printing 1979.
41.P. B. Dunscombe, ”Heat Production in Microwave–Irradiated Thermocouples ”,Med. Phys.,13,457,(1986)
42.W. E. Olmstead, ”A Model for Thermocouple Sensitivity during Microwave Heating ”, Int. J. Heat Mass Transfer. ,40,1559, (1997).
43.W. E. Olmstead,”A Model for Thermocouple Sensitivity during Microwave Heating”,Int. J. Heat Mass Transfer.,40,1559, (1997).
44.W. D. Kingery,”Introduction to Ceramic”,2nd Edition,John Wiley and Sons Inc.(1976).
45.徐洁,”AlN陶瓷中的晶界第二相”,J. Chin. Ceram. Soc.,23,(1995)
46.Y. Yu,”Microtructural characterization an microstructural effects on the thermal conductivity of AlN(Y2O3) ceramic”,J. Eur. Ceram. Soc.,22, 247,(2002).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊