(3.227.235.183) 您好!臺灣時間:2021/04/13 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:饒美雯
研究生(外文):Mei-Wen Jao
論文名稱:側接親油基之聚乙烯亞胺之合成與其在製備金奈米粒子之應用
論文名稱(外文):Synthesis and Characterization of Alkyl-Grafted Polyethylenimine and the Protective Effect on Gold Nanoparticles Formation in Aqueous Solution
指導教授:郭炳林郭炳林引用關係
指導教授(外文):Ping-Lin Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:51
中文關鍵詞:金奈米粒子親兩媒性高分子聚乙烯亞胺
外文關鍵詞:polyethylenimineamphiphilic copolymersgold nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以聚乙烯亞胺與octyl/decyl glycidyl ether進行反應,製備在親水基主鏈上側接不同親油基含量之親兩媒性高分子,並探討其在製備金奈米粒子之應用。首先以核磁共振儀、傅立葉紅外線光譜儀及電位滴定儀確認所合成的高分子結構,並藉由高分子在水中之表面張力、螢光吸收強度推測其於水中的行為,以動態粒徑分析儀與高分子染色法觀察高分子於水中所形成聚集體之水力直徑及分佈,並利用紫外線/可見光吸收光譜儀觀察還原前後其吸收曲線變化,以穿透式電子顯微鏡評估所合成高分子之構造、濃度和有無還原劑對還原後金奈米粒子之粒徑大小、分佈及形狀結構的影響;實驗結果顯示所合成之高分子於水中均是先擴散至空氣/水的界面,待濃度增加後才於水中形成聚集體,觀察其對水表面張力下降之能力為:PEI<<PEI(ODGE)1<PEI(ODGE)2(分別為~ 65.0 dyne/cm、~ 26.0 dyne/cm及~ 22.5 dyne/cm),於水中易形成聚集體的程度為:PEI<PEI(ODGE)1<PEI(ODGE)2;其應用於製備金奈米粒子時,以自行還原法所得粒子粒徑大小為:PEI>PEI(ODGE)1>PEI(ODGE)2,防止粒子凝集之程度為:PEI<<PEI(ODGE)1<PEI(ODGE)2,隨著[N]/[Au3+]比例增加,金奈米粒子尺寸隨之減小,以NaBH4還原法所得粒子尺寸大小亦為PEI>PEI(ODGE)1>PEI(ODGE)2,隨著[N]/[Au3+]比例增加,金奈米粒子尺寸亦隨之減小。
  In this study, octyl/decyl glycidyl ether group was introduced into polyethylenimine with different amounts by a simple in-situ reaction. The ODGE number of these amphiphilic polymers was characterized by 1H-NMR, and total amine values were estimated by potentiometric titration. Then, the measurements of surface tension and the ratio of the fluorescence intensities of pyrene for polymer solutions were used to interpret their behaviors in water. The polymer aggregates were observed by dynamic light scattering measurements and TEM polymer staining technique. The polymer stabilized gold nanoparticles were characterized by UV-vis spectrophotometer and TEM, and the effects of different concentrations and reducing agents on the prepared gold nanoparticles were also investigated. From the experimental results of surface tension and I1/I3, it is clear that the polymer chains in aqueous solution transfer to the air/water interface before forming polymer aggregates. The tendency that polymers were able to reduce the surface tension in aqueous solution is PEI<PEI(ODGE)1<PEI(ODGE)2 (~ 65.0 dyne/cm, ~ 26.0 dyne/cm and ~ 22.5 dyne/cm). The trend of the average particle sizes of gold nanoparticles preparing in the presence of polymers is PEI>PEI(ODGE)1>PEI(ODGE)2. Also, the increasing polymer concentrations decrease the size of gold nanoparticles.
中文摘要--------------------------------------------------------------i
英文摘要--------------------------------------------------------------ii
誌謝------------------------------------------------------------------iii
目錄------------------------------------------------------------------iv
流程目錄--------------------------------------------------------------vii
表目錄----------------------------------------------------------------viii
圖目錄----------------------------------------------------------------ix
第一章 緒論----------------------------------------------------------1
第二章 原理----------------------------------------------------------3
2.1 界面活性劑之簡介-------------------------------------------------3
2.2 界面活性劑與表面張力之關係---------------------------------------3
2.3 螢光-------------------------------------------------------------4
2.3.1 界面活性劑溶液與螢光之關係-------------------------------------4
2.3.2 螢光原理-------------------------------------------------------5
2.4 奈米粒子之簡介---------------------------------------------------8
2.4.1 奈米粒子定義---------------------------------------------------8
2.4.2 奈米粒子的特性-------------------------------------------------8
2.4.3 金屬奈米粒子之製備---------------------------------------------9
2.4.4 化學還原法保護劑的作用-----------------------------------------10
第三章 製備與性質分析------------------------------------------------12
3.1 實驗藥品與儀器設備-----------------------------------------------12
3.1.1 實驗藥品--------------------------------------------------------12
3.1.2 實驗器材--------------------------------------------------------12
3.1.3 分析儀器--------------------------------------------------------13
3.2 親兩媒性高分子之合成---------------------------------------------14
3.3 高分子化合物之結構鑑定-------------------------------------------15
3.4 高分子化合物之溶液行為-------------------------------------------16
3.4.1 界面張力的測定-------------------------------------------------16
3.4.2 螢光光譜的測定-------------------------------------------------16
3.4.3 高分子染色-----------------------------------------------------17
3.5 金奈米粒子之製備與粒徑分析---------------------------------------18
3.5.1 金奈米粒子之製備-----------------------------------------------18
3.5.2 金奈米粒子粒徑之分析-------------------------------------------18
第四章 結果與討論----------------------------------------------------19
4.1 高分子特性分析---------------------------------------------------20
4.1.1 傅立葉紅外線光譜圖---------------------------------------------20
4.1.2 構造鑑定-------------------------------------------------------20
4.1.3 Total amine values---------------------------------------------22
4.1.4 表面張力與螢光性質探討-----------------------------------------23
4.1.5 動態粒徑分析及高分子染色---------------------------------------25
4.2 以自行還原法製備金奈米粒子---------------------------------------27
4.2.1 以PEI製備金奈米粒子--------------------------------------------27
4.2.2 以PEI(ODGE)1製備金奈米粒子-------------------------------------29
4.2.3 以PEI(ODGE)2製備金奈米粒子-------------------------------------32
4.2.4 高分子結構對金奈米粒子之影響-----------------------------------35
4.2.5 動態粒徑分析---------------------------------------------------37
4.2.6 自行還原機制---------------------------------------------------38
4.3 快速還原法(NaBH4)製備金奈米粒子----------------------------------40
第五章 結論----------------------------------------------------------45
參考文獻--------------------------------------------------------------47
自述------------------------------------------------------------------87
[1] 馬遠榮,奈米科技,商周出版,台北市,2002
[2] Siegel, R. W.; Hu, E.; Roco, M. C. WTEC Panel Report on: Nanostructure Science and Technology, kluwer Academic Pubs., 1998.
[3] Toshima, N.; Hirakawa, K. “Polymer-protected bimetallic nanocluster catalysts having core/shell structure for accelerated electron transfer in visible-light-induced hydrogen generation”, Polymer 31, 1127, 1999.
[4] Toshima, N.; Yonezawa, T.; “Bimetallic nanoparticles-novel materials for chemical and physical applications”, New J. Chem. 22, 1179, 1998.
[5] Ishizuka, H.; Tano, T.; Torigoe, K.; Esumi, K.; Meguro, K. “Preparation of monodispersed colloidal gold by reduction of AuCl4--cationic surfactant complexes”, Colloids Surfaced 63, 337, 1992.
[6] Schmid, G.; Peschel, S. “Preparation and scanning probe microscopic characterization of monolayers of ligand-stabilized transition metal clusters and colloids”. New J. Chem. 22, 669, 1998.
[7] Rodriguez, A.; Amiens, C.; Chaudret, B.; Casanove, M.J.; Lecante, P.; Bradley, J. S. “Schmid, G.; Peschel, S. “Preparation and scanning probe microscopic characterization of monolayers of ligand-stabilized transition metal clusters and colloids”, Chem. Matter. 8, 1978, 1996.
[8] 趙承琛,界面科學基礎,復文書局,台南市,2000
[9] Rosen, M. J. “Surfactants and Interfacial Phenomena“, John Wiley & Sons, Inc., New York, 1989.
[10] Attwood, D.; Florence, A. T. “Surfactants Systems-Their chemistry, pharmacy and biology”, Chapman and Hall, New York, 1983.
[11] Shaw, D. J. “Introduction to colloid and Surface Chemistry”, Butterworths, London, 60-87, 1980.
[12] Solomon, D. H.; Hawthrome, D. G. “Chemistry of Pigments and Fillers”, John Wiley & Sons, Inc. New York, 1983.
[13] Turro, N. J.; Geiger, M. W.; Hautala, R. R.; Schoree, N. E. “Fluorescent Probes for Micellar Systems. In Micellization, Solublization and Microemulsions“, Plenum Press New York, 75-86, 1977.
[14] Turro, N. J.; Baretz, B. H.; Kuo, P. L. “Photoluminescence probes for the investigation of interactions between sodium dodecylsulfate and water-soluble polymers”, Macromolecules 17, 1321, 1984.
[15] Goddard, E. D.; Turro, N. J.; Kuo, P.L. “Fluorescence probes for critical micelle concentration determination”, Langmuir 1, 352, 1985.
[16] Kuo, P. L.; Okamoto, M.; Turro, N. J. “Photochemical methods for characterizing the nature of polymer aggregates in aqueous solutions and on a silica surface”, J. Phys. Chem. 91, 2934, 1987.
[17] Turro, N. J. “Modern Molecular Photochemistry”, Benjamin/Cummings Pub. Co. Menlo Park ,103, 1978.
[18] Kalyanasundaram, K.; Thomas, J. K. “Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems”, J. Am. Chem. Soc. 99, 2039, 1977.
[19] Tachiya, M. “Kinetics of quenching of luminescent probes in micellar systems. II”, J. Chem. Phys. 76, 340, 1982.
[20] 蘇品書,超微粒子材料技術,復漢出版社,台南市,1989
[21] 莊萬發,超微粒子理論應用,復漢出版社,台南市,1995
[22] Fendler, J. H. Nanoparticles and nanostructured films: preparation, characterization and applications; Wiley-VCH, Weinhein, 1998.
[23] Fendler, J. H. “Atomic and molecular clusters in membrane mimetic chemistry”, Chem. Rev. 87, 877,1987.
[24] Gaffet, E.; Tachikart, M.; ElKedim, O.; Rahousdj, R. “Nanostructural materials formation by mechanical alloying: Morphologic analysis based on transmission and scanning electron microscopic observations”, Mater. Charact. 36, 185, 1996.
[25] Reetz, M. T.; Helbig, W.; Quaiser, S. A. “Electrochemical Preparation of Nanostructural Bimetallic Clusters “, Chem. Mater. 7, 2227, 1995.
[26] Reetz, M. T.; Quaiser, S. A. “A New Method for the Preparation of Nanostructured Metal Clusters”, Angew. Chem. Int. Ed. Engl. 34, 2240, 1995.
[27] Han, M. Y.; Quek, C. H. ”Photochemical Synthesis in Formamide and Room-Temperature Coulomb Staircase Behavior of Size-Controlled Gold Nanoparticles”, Langmuir 16, 362, 2000.
[28] Okitsu, K.; Bandow, H.; Maeda, Y.; Nagata, Y. “Sonochemical Preparation of Ultrafine Palladium Particles”, Chem. Mater. 8, 315, 1996.
[29] Okitsu, K.; Mizukoshi, Y.; Bandow, H.; Maede, Y.; Yamamoto, T.; Nagata, Y. “Formation of noble metal particles by ultrasonic irradiation”, Ultrasonics Sonochemistry 3, 249, 1996.
[30] Pan, C.; Dassenoy, F.; Casanove, M. J.; Philippot, K.; Amines, C.; Lrvsnyr, P.; Moddry, S.; Chaudret, B. “A new synthetic method toward bimetallic ruthenium platinum nanoparticles; composition induced structural changes”, J. Phys. Chem. B 103, 10098, 1999.
[31] Floriano, P. N.; Noble, C. O., IV; Schoonmaker, J. M.; Poliakoff, E. D.; McCarley, R. L. “Cu(0) Nanoclusters Derived from Poly(propylene imine) Dendrimer Complexes of Cu(II)”, J. Am. Chem. Soc. 123, 10545, 2001.
[32] Esumi, K.; Suzuki, A.; Yamahira, A.; Torigoe, K. “Role of Poly(amidoamine) Dendrimers for Preparing Nanoparticles of Gold, Platinum, and Silver”, Langmuir 16, 2604, 2000.
[33] Zheng, J.; Stevenson, M. S.; Hikida, R. S.; Van Patten, P. G. “Influence of pH on Dendrimer-Protected Nanoparticles”, J. Phys. Chem. B 106, 1252, 2002.
[34] Wnag, Y.; Toshima, N. “Preparation of Pd-Pt Bimetallic Colloids with Controllable Core/Shell Structures”, J. Phys. Chem. B 101, 5301, 1997.
[35] Sangregorio, C.; Galeotti, M.; Bardi, U.; Baglioni, P. ”Synthesis of Cu3Au Nanocluster Alloy in Reverse Micelles”, Langmuir 12, 5800, 1996.
[36] Bonnemann, H.; Richards, R. M. ”Nanoscopic Metal Particles - Synthetic Methods and Potential Applications”, Eur. J. Inorg. Chem. 2455, 2001.
[37] Schmid, G. Clusters and Colloids: from theory to applications; VCH, Weinheim, 1994.
[38] Siggia, S.; Hanna, J. G. Quantitative Organic Analysis via functional groups; 4th ed.; R. E. Krieger Pub. Co. Malabar, Florida, p.569-572, 1988.
[39] Sawyer, L. C.; Grubb, D. T.; Polymer Microscopy, Chapman & Hall, London, p.111-112, 1996.
[40] George Socrates, Infrared and Raman Characteristic Group Frequencies, John Wiley & Sonc, New York, 2001.
[41] Liang, W. J.; Kuo, P. L. “Synthesis of Acrylic Copolymers with Pendant Hydrophilic Groups and Comparative Surface Tension Studies with Corresponding Siloxane Copolymers“, Macromol. Chem. Phys. 202, 1902, 2001.
[42] Kuo, P. L.; Liang, W. J.; Wang, F. Y.; “Hyperbranch-polyethyleniminated functional polymers. I. synthesis, characterization of noveI ABA type of dumbbell-like polyethyleniminated polyoxypropylenediamines, and their complexing properties with copper(II) ions in aqueous solution”, J. Poly. Sci. A 41, 1360, 2003.
[43] Banerjea, D. Coordination Chemistry, Tata McGraw-Hill Publishing Company Limited, New Delhi, 248, 1993.
[44] Bronstein, L. M.; Sidorov, S. N.; Gourkova, A. Y.; Valetsky, P. M.; Hartmann, J.; Breulmann, M.; Antonietti, M.; “Interaction of metal compounds with ‘double-hydrophilic’ block copolymers in aqueous medium and metal colloid formation”, Inorganica Chimica Acta. 280, 348, 1998.
[45] 陳力俊等,材料電子顯微鏡學,國科會精儀中心,新竹市,76,1994
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔