1.P. Meares, ed., Membrane Separation Processes, Elsevier, Amsterdam, p. 259 (1976).
2.M. A. Anderson, M. J. Gieselmann and Q. Xu, “Tatiana and Alumina Ceramic Membranes.” Journal of Membrane Science, 39, 243 (1988).
3.S. L. Matson, J. Lopez and J. A. Quinn, “The Pinch Design Method for Heat Exchanger Networks.”, Chemical Engineering Science, 38(4), 503 (1983).
4.S. L. Michaels, “Crossflow Microfilters Ins and Outs.”, Chem. Eng., 96, 84 (1989, Jan.).
5.仲川勤編, 最新分離機能膜, CMS, 日本東京 (1987)。
6.H. P. Hsieh, “AMERICAN INSTITUTE OF CHEMICAL ENGINEERS.”, AlChE Symp. Ser., 34(1), 116 (1988).
7.R. J. R. Uhlhorn, K. Keizer and A. J. Burggraaf, “Gas and surface diffusion in modified g alumina systems.”, Journal of Membrane Science, 46, 225 (1989).
8.R. R. Bhave, Inorganic Membrane: Synthesis, Characteristics and Applications, Van Nostrand Reinhold, New York (1991).
9.J. D. Way and D. L. Roberts, “Hollow Fiber Inorganic Membranes for Gas Separations.”, Separation Science and Technology, 27, 29 (1992).
10.A. B. Shelekhin, A. G. Dixon and Y. H. Ma, “Adsorption, permeation, and diffusion of gases in microporous membranes. I. Adsorption of gases on microporous glass membranes.”, Journal of Membrane Science, 75, 221 (1992).
11.Y. Cao, B. Liu and J. Deng, “Catalytic
dehydrogenation of ethanol in Pd–M/γ-Al2O3 composite membrane reactors.”, Applied Catalysis A: Genera, 154, 129 (1997).
12.曾怡享, 碳分子篩膜之製備及其特性之研究, 國立成功大學碩士論文 (1999)。13.朱秦億, 鈀及鈀銀複合膜之製備、特性分析及其氫/氮選透性之研究, 國立成功大學博士論文 (2004)。14.W. J. Koros, R. T. Chern, Handbook of Separation Process Technology, John Willy & Son, New York (1987).
15.H. Suda and K. Haraya, “Propylene-propane separation using a carbon molecular sieve membrane.”, Journal of Physical Chemistry B, 100, 3988 (1997).
16.R. A. Alberty and R. J. Silbey, Physical Chemistry, 2nd Edition. John Willy & Son, New York (1998).
17.陳見財, 分離膜污染阻塞與控制簡介, 環保產業雙月刊第11期。
18.M. A. de la Casa-Lillo, J. Alcaniz-Monge, E. Raymundo-Pinero, D. Cazorla-Amoros and A. Linares-Solano, “Molecular sieve properties of general-purpose carbon
fibres.”, Carbon, 36(9), 1353 (1998).
19.Y. Yin and R. E. Collins, “Carbon Molecular-
Sieve Films Produced by DC Sputtering”, Carbon, 31(8), 1333 (1993).
20.V. Jayaraman, Y.S. Lin, M. Pakala, and R.Y. Lin, “Fabrication of Ultrathin Metallic Membranes on Ceramic Support by Sputter Deposition.”, J. Membrane Sci., 99, 89 (1995).
21.Do, D.D., Hu, X. and Rao, G.N., “Experimental Determination of the Intrinsic Surface Diffusivity of Hydrocarbons in Activated Carbon by Means of a Differential Analysis.”, Separation Technology (ed. E.F. Vansant), Elsevier, 309 (1994).
22.黃盟欽, PI-TEOS複合高分子之製備及其特性分析, 國立成功大學化程實驗(2002)。
23.K. Wang, H. Suda, K. Haraya, “The characterization of CO2 permeation in a CMSM derived from polyimide.”, Separation and Purification Technology, 31, 61 (2003).
24.C. Nguyen, D.D. Do, K. Haraya , K. Wang, ”The structural characterization of carbon molecular sieve membrane (CMSM) via gas adsorption.”, Journal of Membrane Science, 220, 177 (2003).
25.A.B. Fuertes and T.A. Centeno, Journal of Membrane Science, 144, 105 (1998).
26.Teresa A. Centeno, Antonio B. Fuertes, Carbon,
38, 1067 (2000)
27.T.A. Centeno, A.B. Fuertes, Letters to the editor / Carbon, 41, 2016 (2002).
28.T.A. Centeno, J.L. Vilas, A.B. Fuertes, Journal of Membrane Science, 228, 45 (2004).
29.A.B. Fuertes, T.A. Centeno, Microporous and Mesoporous Materials, 26, 23 (1998).
30.Antonio B. Fuertes, Carbon, 39, 697 (2001).
31.A.B. Fuertes, D.M. Nevskaia, T.A. Centeno, Microporous and Mesoporous Materials, 33, 115 (1999).
32.T.A. Centeno, A.B. Fuertes, “Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes.”, Separation and Purification
Technology, 25, 379 (2001).
33.De Q. Vu, William J. Koros , Stephen J. Miller, “Mixed matrix membranes using carbon molecular sieves I Preparation and experimental results.”, Journal of Membrane Science, 211, 311 (2003).
34.De Q. Vu, William J. Koros , Stephen J. Miller, “Mixed matrix membranes using carbon molecular sieves II Modeling permeation behavior.”, Journal of Membrane Science, 211, 335 (2003).
35.De Q. Vu, William J. Koros, Stephen J. Miller, “Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves.”, Journal of Membrane Science, 221, 233 (2003).
36.Keisha M. Steel , William J. Koros, “Investigation of porosity of carbon materials and related effects on gas separation properties.”, Carbon, 41, 253 (2003).
37.Michael S. Strano, Henry C. Foley, “Temperature- and pressure-dependent transient analysis of single component permeation through nanoporous carbon membranes.”, Carbon, 40, 1029 (2002).
38.Michael S. Strano, Henry C. Foley, “Modeling ideal selectivity variation in nanoporous membranes.”, Chemical Engineering Science, 58, 2745 (2003).
39.J.N. Barsema, N.F.A. van der Vegt., G.H. Koops, M. Wessling, “Carbon molecular sieve membranes prepared from porous fiber precursor.”, Journal of Membrane Science, 205, 239 (2002).
40.J.N. Barsema, J. Balster, V. Jordan, N.F.A. van der Vegt, M. Wessling, “Functionalized Carbon Molecular Sieve membranes containing Ag-nanoclusters.”, Journal of Membrane Science, 219, 47 (2003).
41.Youn Kook Kim, Ho Bum Park, Young Moo Lee, “Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties.”, Journal of Membrane Science, 226, 145 (2003).
42.Ho Bum Park, Youn Kook Kim, Ji Min Lee, Sun Yong Lee, “Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes.”, Young Moo Lee, Journal of Membrane Science, 229, 117 (2004).
43.Youn Kook Kim, Ji Min Lee, Ho Bum Park, Young Moo Lee, “The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups.”, Journal of Membrane Science, 235, 139 (2004).
44.N. A. Adrova, M. I. Bessonov, L. A. Laius ans A.
P. Rudakov, Polyimide: A new class of thermally stable polymers(in Russian), Nauka, Leningrad(1968).
45.吳宏明, 聚醯亞胺覆銅膜之製備及其裂化現象之研究, 國立功大學化工碩士論文 (1996)。46.施俊安, 可溶性聚醯亞胺之合成及物性之研究, 國立成功大學化工碩士論文 (1996)。47.蔡東穎, 可溶性聚醯亞胺之研究, 國立成功大學化工碩士論文(1998)。48.李政義, 含羥基可溶性聚醯亞胺之合成及性質研究, 國立成功大學化工碩士論文(2001)。49.蘇盟雄, 含第三丁基可溶性聚醯胺-醯亞胺之合成及性質研究, 國立成功大學化工碩士論文(2002)。50.張武君, 含苯氧基聚醯亞胺之合成及性質研究, 國立成功大學化工碩士論文(2002)。51.A. Weill and E. Dechenaux, “Some observations on the static hold up of aqueous solutions”, Polym. Eng. Sci., 28, 945 (1988).
52.D. Bornside, C. Macosko, L. Scriven, “On the Modeling of Spin Coating.”, Journal of Imaging Technology, 13, 122 (1987).
53.B. D. Washo, “AUTOMATIC SIGNATURE VERIFICATION BASED ON ACCELEROMETRY.”, IBM J. Res. Dev., 21, 190 (1977).
54.B. T. Chen, “Structural transformations of aromatic polyamides containing carborane at increased temperatures.”, Polym. Eng. Sci., 23, 399 (1983).
55.賴耿陽, 碳材料化學與工學, 初版, 復漢初版社 (1991)。
56.K. Kinoshita, Carbon, Electrochemical and physicochemical properties, John Wiley & Sons (1988).
57.李秉傑, 邱宏明, 王奕凱, 非均勻系催化原理與應用, 初版, 渤海堂文化公司(1988)。
58.J. W. Patrick, Porosity in Carbons, 1st ed., Edward Arnold (1995).
59.D. S. Scott, F. A. Dullien, “Diffusion of Ideal Gases in Capillaries and Porous Solids.”, AlChe J., 8, 113 (1962).
60.K. Keizer, R. J. R. Uhlorn, V. T. Zaspalis, A. J. Burggraaf, “Microporous sol-gel modified membranes for hydrogen separation.”, Key Eng. Mater., 61, 143 (1991).
61.K. Keizer, R. J. R. Uhlorn, R. J. Van Vuren, A. J. Burggraaf, “Gas separation mechanisms in microporous modified Ag/Al2O3 membranes.”, Journal of Membrane Science, 39, 285 (1988).
62.陳慧英, “氧化鋁薄膜之製備及其在氣體分離上之應
用”, 國立成功大學化學工程研究所博士論文(1995)。
63.G. L. Holleck, “Diffusion and solubility of
hydrogen in palladium and palladium silver alloys.”, J Chem. Phys., 74, 503 (1970).
64.Y. Hishiyama, K. Inagaki, I. Kanaoka, H. Fujii, T. Koidesawa, Y. Shimazawa and A. Yoshida, “Graphitization behavior of kapton-derived carbon film related to structure, microtexture and transport properties.”, Carbon, 35(5), 657 (1997).
65.H. Konno, T. Nakahashi and M. Inagaki, “State analysis of nitrogen in carbon film derived from polyimide kapton.”, Carbon, 35(5), 669 (1997).
66.M. Takahashi and M. Fuji, “Synthesis and Fabrication of Inorganic Porous Materials: From Nanometer to Millimeter Sizes”, KONA, 20, 84(2002).