(18.232.55.103) 您好!臺灣時間:2021/04/23 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃合建
研究生(外文):Ho-Chien Huang
論文名稱:光敏性硒化鎘奈米微粉之合成與特性研究
論文名稱(外文):Synthesis and Characterization of Photosensitive Cadmium Selenide Nanoparticles
指導教授:陳慧英陳慧英引用關係
指導教授(外文):Huey-Ing Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:132
中文關鍵詞:硒化鎘奈米微粉濕式沈澱法
外文關鍵詞:chemical wetnesscadmium selenidenanoparticle
相關次數:
  • 被引用被引用:6
  • 點閱點閱:424
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
  本研究係以硫酸鎘及亞硫酸硒鈉為前驅鹽,採用濕式沈澱法在水溶液相合成奈米級硒化鎘微粉。實驗中,分別以檸檬酸二銨、檸檬酸鈉與丙硫醇酸作錯合劑,針對反應氣氛、溫度、反應時間、前驅鹽濃度、錯合劑濃度、pH值及前驅鹽比例等製備變因,對所得微粉晶態、組成、形狀、粒徑及其分佈、UV吸收以及放光性質之影響來加以探討。
  實驗結果顯示,在氮氣氣氛下,適量之檸檬酸二銨、檸檬酸鈉或丙硫醇酸可錯合鎘離子,避免氫氧化鎘之雜相存在,可得面心立方型硒化鎘微粉產物。當降低前驅鹽濃度、反應溫度、檸檬酸二銨濃度、檸檬酸鈉、丙硫醇酸濃度或提高pH值均可使微粉粒徑降低。但降低溫度時,平衡轉化率亦隨之降低。適當控制反應條件,可得能隙約在1.8-2.9 eV之硒化鎘微粒,其微粉理論粒徑在7.4-3.3 nm之間。實驗結果並顯示,丙硫醇酸之添加可得單佈性良好之硒化鎘微粉。當CdSe微粉粒徑減小時,其吸光及放光波長均呈現藍位移之現象,亦即此半導體微粉能隙變大。
  藉由本研究可知,本法可在溫和及環保之條件,藉由控制反應條件可製備出不同粒徑及能隙CdSe之奈米微粉。
  In this study, nano-sized CdSe particles were synthesized via chemical wetness route. Experimentally, The CdSe nanoparticles were obtained by precipitation of CdSO4 and Na2SeSO3 in alkaline aqueous solution. Firstly, in avoiding the formation of Cd(OH)2, di-ammonium hydrogen citrate (ACT), sodium citrate (CT-Na) and 3-mercaptopropionic acid (MPA) were added as the chelating agents, respectively. The effects of preparation conditions such as atmosphere, reaction temperature and time, concentrations of precursors and chelating agents, pH value and [Cd2+]/[Se2-] ratio on the characteristics of prepared particles including the crystalline structure, shape, particle size and size distribution were investigated. Furthermore, the optical and photoluminescent properties of resulting particles were also studied.
  The experimental results show that the fcc-structured CdSe nanoparticles can be obtained under N2 atmosphere. The addition of ACT, CT-Na and MPA play a key role on the formation of high-purity products without the presence of Cd(OH)2. Furthermore, it is found that the particle size decreases with decreasing the concentrations of precursors, ACT, CT-Na or MPA. The same tendencies were also found for reaction temperature and time, whereas the effect of pH value is the reverse. However, the equilibrium conversion is relatively low at lower reaction temperature. The prepared particles are sizing from 7.4 to 3.3 nm corresponded as band gaps from 1.8 to 2.9 eV, depending upon the preparation condition. Also, the results reveal that the addition of MPA can obtain highly monodisperse nanoparticles. As the particle size is reduced, the UV/VIS absorption and photoluminescence spectra are toward blue shift. As well, the bandgaps of particles become larger.    From this study, the relationship between preparation condition and characteristics of resulting particles has been comprehended. It is worth to note, the CdSe nanoparticles can be synthesized in mild aqueous conditions. In addition, the band gap of the resulting nanoparticles modulated by appropriately varying the reaction condition. More importantly, it reveals that the synthesis of nanosized high-purity CdSe particles is feasible and promising via chemical wetness route under friendly environmental and mild conditions.
總目錄
誌謝
中文摘要 ………………………………………………………………… I
英文摘要 ………………………………………………………………… II
總目錄 …………………………………………………………………… IV
表目錄 …………………………………………………………………… VI
圖目錄 …………………………………………………………………… VII
符號說明 ………………………………………………………………… XI

第一章 緒論 ..……………………………………………….…………… 1
1.1 半導體簡介 ………………………………………….…………… 1
1.1.1 能帶結構 …………………………………………………… 1
1.1.2 半導體的種類 ……………………………………………… 3
1.2 硒化鎘半導體晶體 …………………..…………………………… 4
1.3 硒化鎘微粉之應用 ………..……………………………………… 4
1.4 硒化鎘微粉之製備方法 ……………..…………………………… 6
1.5 本研究之目的及內容 ………………..…………………………… 10
第二章 原理 ..…………………………………………………………… 22
2.1 硒化鎘生成反應 …………………..……………………………... 22
2.2 微粒生成 …………………………..……………………………... 23
2.3 光激發光光譜 …………………..………………………………... 27
2.4 硒化鎘之能隙與粒徑計算 ………..……………………………... 28
2.5 發光量子效率 ………..…………………………………………... 30
第三章 實驗部分 ……………………………………………………….. 35
3.1 藥品 ………..…………………………………….……………….. 35
3.2 分析儀器 ……..………………………………….……………….. 36
3.3 實驗方法與步驟 ..……………………………….……………….. 37
3.4 分析方法 ..……………………………………….……………….. 39
第四章 結果與討論 ………………………………………………….. 46
4.1 預備實驗 ……………………………..………………………….. 46
4.1.1 預備實驗 ………………………………………………….. 46
4.1.2 錯合劑之選定 …………………………………………….. 48
4.2 檸檬酸二銨為錯合劑 ………………..………………………….. 49
4.2.1 溫度效應 ………………………………………………….. 49
4.2.2 前驅鹽濃度效應 ………………………………………….. 53
4.2.3 檸檬酸二銨添加比例 …………………………………….. 55
4.2.4 反應起始pH值 …….…………………………………….. 60
4.2.5 [Cd2+]/[Se2-]比例 ………………………………………….. 61
4.3 丙硫醇酸為錯合劑 ……………………………………...………. 63
4.3.1 反應起始pH值 ………………………….……………….. 63
4.3.2 丙硫醇酸濃度效應 ……………………………………….. 65
4.3.3 攪拌速率之影響 ………………………………………….. 66
4.4 檸檬酸二銨與丙硫醇酸之比較 ………………...………………. 66
第五章 結論及建議 …..…………………………………………….…. 121
參考文獻 ………………..…………………………………………….…. 123
自述
參 考 文 獻
1.R. Turton, “The Physics of Solids”, Oxford, New York, (2000).
2.M. Fox, “Optical Properties of Solids”, Oxford, New York, (2001).
3.S. M. Sze, “Physics of Semiconductor Device”, Wiley Interscience Publication, New York, (1981).
4.A. L. Rogach, A. Kornowski, M. Gao, A. Eychmiiler and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals”, J. Phys. Chem. B, 103, 3065-3069 (1999).
5.L. Qu and X. Peng, “Control of Photoluminescence Properties of CdSe Nanocrystals in Growth”, J. Am. Chem. Soc., 124(9), 2049-2055 (2002).
6.K. Walzer, U. J. Quaade, D. S. Ginger, N. C. Greenham and K. Stokbro, “Adsorption Behavior and Current-Voltage Characteristics of CdSe Nanocrystals on Hydrogen-Passivated Silicon ”, J. Appl. Phys., 92(3), 1343-1440 (2002).
7.A. Y. Nazzal, L. Qu, X. Peng and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases”, Nano Lett., 3(6), 819-822 (2003).
8.M. Morales, P. J. Sebastian and O. Solorza, “Characterization of Screen Printed Ti/CdS and Ti/CdSe Photoelectrodes for Photoelectrochemical Hydrogen Production”, Sol. Energy Mater. Sol. Cells, 55(1-2), 51-58 (1998).
9.A. J. Nozik, “Quantum Dot Solar Cells”, Physica E, 14(1-2), 115-120 (2002).
10. M. Klude, T. Passow, R. Kroger and D. Hommel, “Electrically Pumped Lasing from CdSe Quantum Dots”, Electron. Lett., 37(18), 1119-1120 (2001).
11. V . A. Kasiyan, R. Z. Shneck, Z. M. Dashevsky and S. R. Rotman, “Development of AIIBVI Semiconductors Doped with Cr for IR Laser Application”, Phys. Stat. Sol., 229(1), 395-398 (2002).
12. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos and P. L. McEuen, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal”, Nature, 389, 699-701 (1997).
13. D. L. Feldheim and C. D. Keating, “Self-Assembly of Single electron Transistors and Related Devies”, Chem. Soc. Rev., 27(1), 1-12 (1998).
14. B. O. Dabbousi and M. G. Bawendi, “Electroluminescence form CdSe Quantum-Dot/Polymer Composites”, Appl. Phys. Lett., 66(11), 1316-1318 (1995).
15. M. Gao, B. Richter, S. Kirstein and H. Mohwald, “Electroluminescence Studies on Self-Assembled Films of PPV and CdSe Nanoparticles ”, J. Phys. Chem. B, 102(21), 4096-4103 (1998).
16. S. H. Kim, G. Markovich, S. Rezvani, S. H. Choi, K. L. Wang and J. R. Heath, “Tunnel Diodes Fabricated form CdSe Nanocrystals Monolayers”, Appl. Phys. Lett., 74(2), 317-319 (2001).
17. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan and U. Banin, “Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes”, Science, 295, 1506-1508 (2002).
18. M. B. Jr., M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, “Semiconductor Naoncrystals as Fluorescent Biological Labels”, Science, 281, 2013-2015 (1998).
19. W. C. W. Chan and S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Noisotopic Detection”, Science, 281, 2016-2018 (1998).
20. C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E=S,Se,Te) Semiconductor Nanocrystallites”, J. Am. Chem. Soc., 115(19), 8706-8715 (1993).
21. T. Trindade and P. O’Brien, “Synthesis of CdS and CdSe Nanoparticles by Thermolysis of Diethyldithio- or Diethyldiseleno- Carbamates of Cadmium”, J. Mater. Chem., 6(3), 343-347 (1996).
22. T. Trindade and P. O’Brien, “Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach”, Chem. Mater., 9(2), 523-530 (1997).
23. B. Ludolph, M. A. Malik, P. O’Brien and N. Revaprasadu, “Novel Single Molecule Precursor Routes for the Direct Synthesis of Highly Monodispersed Quantum Dots of Cadmium or Zinc Sulfide or Selenide”, Chem. Commun., (17), 1849-1850 (1998).
24. D. J. Crouch, P. O’Brien, M. A. Malik, P. J. Skabara and S. P. Wright, “A one-Step Synthesis of Cadmium Selenide Quantum Dots from a Novel Single Source Precursor”, Chem. Commun., (12), 1454-1455 (2003).
25. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, “Shape Control of CdSe Nanocrystals”, Nature, 404, 59-61 (2000).
26. L. Qu, Z. A. Peng and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals”, Nano Lett., 1(6), 333-337 (2001).
27. Z. A. Peng and X. Peng, “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor”, J. Am. Chem. Soc., 123(1), 183-184 (2001).
28. Z. A. Peng and X. Peng, “Mechanisms of the Shape Evolution of CdSe Nanocrystals”, J. Am. Chem. Soc., 123(7), 1389-1395 (2001).
29. Z. A. Peng and X. Peng, “Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth”, J. Am. Chem. Soc., 124(13), 3343-3353
(2002).
30. X. Peng, “Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals”, Adv. Mater., 15(5), 459-463 (2003).
31. L. Manna, E. C. Scher and A. P. Alivisators, “Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals”, J. Am. Chem. Soc., 122(51), 12700-12706 (2000).
32. J. Hambrock, A. Birkner and R. A. Fischer, “Synthesis of CdSe Nanoparticles Using Various Organometallic Cadmium Precursors”, J. Mater. Chem., 11(12), 3197-3201 (2001).
33. T. Nann and J. Riegler, “Monodisperse CdSe Nanorods at Low Temperatures”, Chem. Eur. J., 8(20), 4791-4795 (2002).
34. E. Kucur, J. Riegler, G. A. Urban and T. Nann, “Determination of Quantum Confinement in CdSe Nanocrystals by Cyclic Voltammetry”, J. Chem. Phys.,119(4), 2333-2337 (2003).
35. J. Zhu, O. Palchik, S. Chen and A. Gedanken, “Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles”, J. Phys. Chem. B, 104, 7344-7347 (2000).
36. O. Palchik, R. Kerner, A. Gedanken, A. M. Weiss, M. A Slifkin and
V. Palchik, “Microwave-Assisted Polyol Method for the Preparation of CdSe “Nanoballs””, J. Mater. Chem., 11, 874-878 (2001).
37. S. J. Choi, D. H. Woo, N. Myung, H. Kang and S. M. Park, “Electrochemical Preparation of Cadmium Selenide Nanoparticles by the Use of Molecular Templates”, J. Electrochem. Soc., 148(9), C569-C573 (2001).
38. R. N. Irit, H. D. Wagner, I. Rubinstein and G. Hodes, “Structural Effects in the Electrodeposition of CdSe Quantum Dots on Mechanically Strained Gold”, Adv. Funct. Mater., 13(2), 159-164 (2003).
39. J. P. Ge, Y. D. Li and G. Q. Yang, “Mechanism of Aqueous Ultrasonic Reaction: Controlled Synthesis, Luminescence Properties of Amorphous Cluster and Nanocrystalline CdSe”, Chem. Commum., (17), 1826-1827 (2002).
40. X. Zheng, Y. Xie, L. Zhu, X. Jiang and A. Yan, “Formation of Vesicle-Templated CdSe hollow Spheres in an Ultrasound-Induced Anionic Surfactant Solution”, Ultrason. Sonochem., 9(6), 311-316 (2002).
41. H. L. Li, Y. C. Zhu, S. G. Chen, O. Palchik, J. P. Xiong, Y. Koltypin,
Y. Gofer and A. Gedanken, “A Novel Ultrasound-Assisted Approach to the Synthesis of CdSe and CdS Nanoparticles”, J. Solid State Chem., 172(1), 102-110 (2003).
42. Y. Mastai, R. Polsky, Yu. Koltypin, A. Gedanken, and G. Hodes, “Plused Sonoelectrochemical Synthesis of Cadmium Selenide Nanoparticles”, J. Am. Chem. Soc., 121(43), 10047-10052 (1999).
43. J. Zhu, X. Liao, X. Zhao and J.Wang, “Photochemical Synthesis and Characterization of CdSe Nanoparticles”, Mater Lett., 47(6), 339-343
(2001).
44. X. G. Y. Ni, H. Liu, Q. Ye and Z. Zhang, “-Irradiation Preparation of Cadmium Selenide Nano-Particles in Ethylenediamine System”, Mater. Res. Bull., 36(9), 1609-1613 (2001).
45. Q. Yang, K. Tang, F. Wang, C. Wang and Y. Qian, “A -Irradiation Reduction Route to Nanocrystalline CdE (E= Se, Te) at Room Tepmerature”, Mater Lett., 57(22-23), 3508-3512 (2003).
46. Y. Hu, W. Chen, J. Chen and S. Zhang, “A Novel Route to Prepare CdSe Hollow Structures”, Mater Lett., 57(21), 3137-3139 (2003).
47. W. B. Zhao, J. J. Zhu and H. Y. Chen, “Photochemical Preparation of Rectangular PbSe and CdSe Nanoparticles”, J. Cryst. Growth. , 2(4), 587-592 (2003).
48. Y. L. Yan, Y. Li, X. F. Qian, J. Yin and Z. K. Zhu, “Preparation and Characterization of CdSe Nanocrystals via Na2SO3-Assisted Photochemical Route”, Mater. Sci. Eng. B, 103(2), 202-206 (2003).
49. E. Hao, H. Sun, Z. Zhou, J. Liu, B. Yang and J. Shen, “Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles”, Chem. Mater., 11(11), 3096-3102 (1999).
50. L. Xu, L. Wang, X. Huang, J. Zhu, H. Chen and K. Chen, “Surface Passivation and Enhanced Quantum-Size Effect and Photo Stability of Coated CdSe/CdS Nanocrystals”, Pyhsica E, 8(2), 129-133 (2000).
51. C. C. Chen, C. Y. Chu and Z. H. Lang, “Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods”, Chem. Mater., 12(6), 1516-1518 (2000).
52. A. Kasyua, G. Milczarek, I. Dmitruk, Y. Barnakov, R. Czajka, O.
Perales, X. Liu, K. Tohji, B. Jeyadevan, K. Shinoda, T. Ogawa,
T. Arai, T. Hihara and K. Sumiyama, “Size- and Shape-Controls and Electronic Functions of Nanometer-Scale Semiconductors and Oxides”, Colloid Surf. A-Physicochem. Eng. Asp., 202(2-3), 291-296 (2002).
53. W. Wang, Y. Geng, P. Yan, F. Liu, Y. X and Y. T. Qian, “Synthesis and Characterization of MSe (M=Zn, Cd) Nanorods by a New Solvothermal Method”, Inorg. Chem. Commun., 2(3), 83-85 (1999).
54. Y. D. Li, H. Liao, Y. Fan, L. Li and Y. T. Qian, “A Solvothermal Synthetic Route to CdE (E= S, Se) Semiconductor Nanocrystalline”, Mater. Chem, Phys., 58(1), 87-89 (1999).
55. C. Wang, W. X. Zhang, X. F. Qian, X. M. Zhang, Y. Xie and Y. T.
Qian, “An Aqueous Approach to ZnSe and CdSe Semiconductor Nanocrystals”, Mater. Chem. Phys., 60(1), 99-102 (1999).
56. Q. Yang, K. B. Tang, C. R. Wang, C. J. Zhang and Y. T. Qian, “Wet Synthesis and Characterization of MSe (M= Cd, Hg) Nanocrystallites at Room Temperature”, J. Mater. Res., 17(5), 1147-1152 (2002).
57. L. Xu, X. F. Huang, H. B. Huang, H. M. Chen, J. Xu and K. J. Chen, “Surface Modification and Enhancement of Luminescence due to Quantum Effects in Coated CdSe/CuSe Semiconductor Nanocrystals”, Jpn. J. Appl. Phys., 37(6), 3491-3494 (1998).
58. L. Xu, K. J. Chen, J. M. Zhu, H. M. Chen, H. B. Huang, J. Xu and X.
F. Huang, “Core-Shell Structure and Quantum Effect of CdSe/HgSe/CdSe Quantum Dot Quantum Well”, Superlattices microstruct., 29(1), 67-72 (2001).
59. R. J. Bandaranayake, G. W. Wen, J. Y. Lin, H. X. Jiang and C. M.
Sorensen, “Structural Phase Behavior in II-VI Semiconductor Nanoparticles”, Appl. Phys. Lett., 67(6), 831-833 (1995).
60. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmuller and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals”, J. Phys. Chem. B, 103(16), 3065-3069 (1999).
61. S. M. Liu, H. Q. Guo, Z. H. Zhang, R. Li, W. Chen and Z. G. Wang, “Characterization of CdSe and CdSe/CdS core/Shell Nanoclusters Synthesized in Aqueous Solution”, Physica E, 8(2), 174-178 (2000).
62. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature”, J. Colloid Interface Sci., 252(1), 77-81 (2002).
63. S. Wageh, S. M. Liu and X. R. Xu, “Effect of Aging on CdSe Nanocrystals”, Physica E, 16(2), 269-273 (2003).
64. D. Pejova, A. Tanusevski and I. Grozdanov, “Chemical Deposition of Semiconducting Cadmium Selenide Quantum Dots in Thin Film Form and Investigation of Their Optical and Electrical Properties”, J. Solid State Chem., 172(2), 381-388 (2003).
65. H. H. Song, Z. Fang, and H. Q. Guo, “Synthesis and Characterization of CdSe/Poly(4-vinylpyridine) Quateenary Ammonium Nanocomposite”, Acta Phys. –Chim. Sin., 19, 9-12 (2003).
66. P. P. Hankare, V. M. Bhuse, K. M. Garadkar, S. D. Delekar, I. S. Mulla, “Low Temperature Route to Grow Polycrystalline Cadmium Selenide and Mercury Selenide Thin Films”, Mater. Chem. Phys., 82(3), 711-717 (2003).
67.M. A. Vairavamurthy, W. S. Goldenberg, S. Ouyang and S. Khalid, “The Interaction of Hydrophilic Thiols with Cadmium: Investigation with A Simple Model, 3-Mercaptopropionic Acid” , Mar. Chem., 70, 181-189 (2000).
68.黃忠良, 精密陶瓷材料概念, 復漢出版社, 2001年, 台南.
69. J. W. Mullin, “Crystallization”, Butterworth-Heinemann, Boston, (1993).
70. C. B. Murray, C. R. Kagan and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies”, Annu. Rev. Mater. Sci., 30(1), 545-610 (2000).
71. X. Peng, J. Wickham and A. P. Alivisatos, “Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions”, J. Am. Chem. Soc., 120(21), 5343-5344 (1998).
72. Z. Qiao, Y. Xie, J. Huang, Y. Zhu and Y. T. Qian, “Single-Step Confined Growth of CdSe/Polyacrylamide Nanocomposites under -Irradiation”, Radiat. Phys. Chem., 58, 287-292 (2000).
73. M. A. Malik, P. O’Brien and N. Revapresadu, “Semiconductor Nanoparticles: Their Properties, Synthesis and Potential for Application”, S. Afr. J. Sci., 96(2), 55-60 (2000).
74. A. D. Yoffe, “Low-Dimensional Systems: Quantum Size Effects and Electronic Properties of Semiconductor Microcrystallites (Zero-Dimensional Systems) and Some Quasi-Two-Dimensional Systems”, Adv. Phys., 42(2), 173-266 (1993).
75. L. E. Brus, “Electron-Electron and Electron-Hole Interactions in Small semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State”, J. Chem. Phys., 80(9), 4403-4409 (1984).
76. Y. Wang, A. Suna, W. Mahler and R. Kasowski, “PbS in Polymers. From Molecules to Bulk Solids”, J. Chem. Phys., 87(12), 7315-7322 (1987).
77. Y. Kayanuma, “Quantum-Size Effects of Interacting Electrons and Holes in Semiconductor Microcrystals with Spherical Shape”, Phys. Rev. B, 38(14), 9797-9805 (1988).
78. Y. Wang and N. Herron, “Quantum Size Effects on the Exciton Energy of CdS Clusters”, Phys. Rev. B, 42(11), 7253-7255 (1990).
79. Y. Kayanuma and H. Momiji, “Incomplete Confinement of Electrons and Holes in Microcrystals”, Phys. Rev. B, 41(14), 10261-10263 (1990).
80. M. L. Steigerwald and L. E. Brus, “Semiconductor Crystallites: a Class of Large Molecules”, Acc. Chem. Res., 23(6), 183-188 (1990).
81. Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties”, J. Phys. Chem., 95(2), 525-532 (1991).
82. B. Zorman, M. V. Ramakrishna and R. A. Friesner, “Quantum Confinement Effects in CdSe Quantum Dots”, J. Phys. Chem., 99(19), 7649-7653 (1995).
83. R. Mu, Y. S. Tung, A. Ueda and D. O. Henderson, “Chemical and Size Characterization of Layered Lead Iodide Quantum Dots via Optical Spectroscopy and Atomic Force Microscopy”, J. Phys. Chem., 100(51), 19927-19932 (1996).
84. T. Trindade, P. O’Brien and N. L. Pickett, “Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives”, Chem. Mater., 13(11), 3843-3858 (2001).
85. P. E. Lippens and M. Lannoo, “Calculation of the Band Gap for Small CdS and ZnS Crystallites”, Phys. Rev. B, 39(15), 10935-10942 (1989).
86. P. E. Lippens and M. Lannoo, “Comparison between Calculated and Experimental Values of the Lowest Excited Electronic State of Small CdSe Crystallites”, Phys. Rev. B, 41(9), 6079-6081 (1990).
87. M. V. R. Krishna and R. A. Friesner, “Exciton Spectra of Semiconductor Clusters”, Phys. Rev. Lett., 67(5), 629-632 (1991).
88. L. W. Wang and A. Zunger, “Pseudopotential Calculations of Nanoscale CdSe Quantum Dots”, Phys. Rev. B, 53(15), 9579-9582 (1996).
89. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders and S. B. Warner, “The Science and Design of Engineering Materials”, McGraw-Hill, USA, (1999).
90. C. M. Donega, S. G. Hickey, Ss. F. Wuister, D. Vanmaekelbergh and A. Meijerink, “Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals”, J. Phys. Chem. B, 107, 489-496 (2003).
91. H. P. Klug, L. E. Alexander, “X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials”, 2nd Edition, Wiley, New York, (1974).
92. R. C. Kainthla, D. K. Pandya and K. L. Chopra, “Solution Growth of CdSe and PbSe Films”, 127(2), 277-283 (1980).
93. 王崇人, “神奇的奈米科學”, 科學發展月刊, 354期, 45-51 (2002).
94. C. D. Wagner, “Handbook of X-Ray Photoelectron Spectroscopy”, Perkin-Elmer, MN, (1979).
95. O. Yamamoto and T. Sasamoto, “Preparation of Crystalline CdSe Particles by Chemical Bath Deposition”, J. Mater. Res., 13(12), 3394-3398 (1998).
96. A. V. Firth and D. J. Cole-Hamilton, “Optical Properties of CdSe Nanocrystals in A Polymer Matrix”, Appl. Phys. Lett., 75(20), 3120-3122 (1999).
97. S. Gorer and G. Hodes, “Quantum Size Effects in the Study of Chemical Solution Deposition Mechanisms of Semiconductor Films”, J. Phys. Chem., 98(20), 5338-5346 (1994).
98. L. Spanhel, M. Haase, H. Weller and A. Henglein, “Photochemistry of Colloidal Aemiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles”, J. Am. Chem. Soc., 109(19), 5649-5655 (1987).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3. 李秀金(2003),「我國與美國公立大學內部稽核制度之比較評核」主計月刊第572期(2003年8月)頁34。
2. 7. 林江亮、張秋桂與黃美玲(2004)「非營利組織稅務問題之研究」財稅研究第36卷第2期頁12~25
3. 9. 林江亮、戴佐梅與張正仁(2003)「非營利組織所得稅徵免之探討」稅務旬刊第一八七五期頁27~31
4. 10. 林江亮、戴佐梅與胡麗嬌(2003)「私立學校所得稅徵免探討」稅務旬刊第一八七六期頁33~36
5. 13. 馬秀如(1995)「民間審計資源之利用-兼及美國審計準則公報第六十八號」審計季刊第十五卷第四期頁41
6. 20. 劉三錡(2002)「國立大學的內部審核與經費稽核」主計月刊562期2002年10月頁6~12
7. 22. 劉火欽(2003)「私立大專院校金融商品投資管理」主計月刊572期2003年8月
8. 朱應舞,2003,追縱「沙氏法案」最新脈動!,會計研究月刊,第209期(4月):92-101 。
9. 李香瑩,2002,「您可以相信財務報表嗎?」企業盈餘操縱相關問題研討會報導,會計研究月刊,第205期(12月):18-24。
10. 范曉玲,2002,公司治理及財務審計之新紀元—二00二年美國證券交易Sarbanes – Oxley 法案簡介,月旦法學, No.89(10月):267-274。
11. 陳依蘋,2002,美國使上最大破產案-安隆(Enron)深度報導,會計研究月刊,第195期(2月):16-20。
12. 曾炳霖,2002,淺論公司治理-以安隆案為中心,會計研究月刊,第205期(12月):65-83。
 
系統版面圖檔 系統版面圖檔